Mechanism of Tolerance Induction

  • Ada M. Kruisbeek
  • John D. Nieland
  • Lori A. Jones
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 323)


The randomly generated T-cell repertoire is shaped by two processes that occur in the thymus, positive and negative selection (1-5). Positive selection is responsible for generating a T cell repertoire that has the ability to recognize antigenic peptides in association with self major histocompatibility complex (MHC) molecules. The other process is called negative selection, and assures that tolerance for self-antigens is achieved. During negative selection, potentially autoreactive T cells (i.e. those with high affinity for “self” antigens presented on self-MHC molecules) are actually deleted from the T cell repertoire (2,6,7) or are clonally inactivated (1,8). “Self” is defined here as those self or foreign antigens which are present in the thymus at the moment of selection, a prime moment for which appears to be the early neonatal period: Neonatally thymectomized mice develop a variety of tissue-specific autoimmune diseases later in life (9,10). Although factors controlling these autoimmune diseases are poorly understood, defects in clonal inactivation and clonal deletion have been assigned to be the major cause of autoimmune diseases (9,11,12). In the context of the present definition of self, neonatal virus infection of the thymus results in specific viral peptides being presented as self-antigens, resulting in tolerance for foreign peptides (see below).


Major Histocompatibility Complex Major Histocompatibility Complex Class Mouse Mammary Tumor Virus Major Histocompatibility Complex Molecule Foreign Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Ramsdell, and B.I. Fowlkes, Clonal deletion versus clonal anergy: The role of the thymus in inducing self tolerance, Science 248:1343 (1990).Google Scholar
  2. 2.
    I.W. Kappler, N. Roehm, and P. Marrack, T cell tolerance by clonal deletion in the thymus, Cell 49:273 (1987).Google Scholar
  3. 3.
    J.C. Zuniga-Pflucker, L.A Jones, L.T. Chin, and A.M. Kruisbeek, CD4 and CD8 act as co-receptors during thymic selection of the T cell repertoire, Sem. Immunol. 3:167 (1991).Google Scholar
  4. 4.
    P. Kisielow, H.S. Teh, H. Blüthmann, and H. von Boehmer, Positive selection of antigen-specific T cells in thymus by restricting MHC molecules, Nature 335:730 (1988).Google Scholar
  5. 5.
    M. Blackman, J. Kappler, and P. Marrack, The role of the T cell receptor in positive and negative selection of developing T cells, Science 248:1335 (1990).Google Scholar
  6. 6.
    J.W. Kappler, U. Staerz, J. White, and P.C. Marrack, Self-tolerance eliminates T cells specific for MIs-modified products of the major histocompatibility complex, Nature 332:35 (1988).Google Scholar
  7. 7.
    H.R. MacDonald, R. Schneider, R.K. Lees, R.C. Howe, H. Acha-Orbea, H. Festenstein, R.M. Zinkernagel, and H. Hengartner, T cell receptor Vβ use predicts reactivity and tolerance to Mlsa-encoded antigens, Nature 332:40 (1988).Google Scholar
  8. 8.
    J.L. Roberts, S.O. Sharrow, and A. Singer, Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities, J. Exp. Med. 171:935 (1990).Google Scholar
  9. 9.
    A. Kojima, and R.T. Prehn, Genetic susceptibility to post-thymectomy autoimmune diseases in mice, Immunogenetics 14:15 (1981).Google Scholar
  10. 10.
    H. Smith, I.-M. Chen, R. Kubo, and K.S.K. Tung, Neonatal thymectomy results in a repertoire enriched in T cell deleted in adult thymus, Science 245:749 (1989).Google Scholar
  11. 11.
    E.I. Yunis, R. Hong, M.A. Grewe, C. Martinez, E. Cornelius, and R.A. Good, Postthymectomy wasting associated with autoimmune phenomena. Antiglobulinpositive anemia in A and C57BL/6 Ks mice, J. Exp. Med. 125:947 (1967).Google Scholar
  12. 12.
    Frontiers in Research: Immunological Tolerance. Science 248, 1335–1393 (1990).Google Scholar
  13. 13.
    W.N. Frankel, C. Rudy, J.M. Coffin, and B.T. Huber, Linkage of Mis genes to endogenous mammary tumour viruses in inbred mice, Nature 349:526 (1991).Google Scholar
  14. 14.
    H. Acha-Orbea, A.N. Shakhov, L. Scarpellino, E. Kolb, V. Müller, A. Vessaz-Shaw, F. Fuchs, K. Blöchlinger, P. Rollini, J. Billotte, M. Sarafidou, H.R. MacDonald, and H. Diggelmann, Clonal deletion of Vβ14-bearing T cells in mice transgenic for mammary tumour virus, Nature 350:207 (1991).Google Scholar
  15. 15.
    D.L. Woodland, M.P. Happ, K.J. Gollob, and E. Palmer, An endogenous retrovirus mediating deletion of ∝β T cells? Nature 349:529 (1991).Google Scholar
  16. 16.
    D.J. Dyson, A.M. Knight, S. Fairchild, E. Simpson, and K. Tomonari, Genes encoding ligands for deletion of Vβ11 T cells cosegregate with mammary tumour virus genomes, Nature 349:531 (1991).Google Scholar
  17. 17.
    C.Y. Okada, B. Holzmann, C. Guido, E. Palmer, and I.L. Weissman, Characterization of a rat monoclonal antibody specific for a determinant encoded by the Vβ7 gene segment. Depletion of Vβ7+ T cells in mice with Mls-1a haplotype, J. Immunol. 144:3473 (1990).Google Scholar
  18. 18.
    M.P. Happ, D.L. Woodland, and E. Palmer, A third T-cell receptor β-chain variable region gene encodes reactivity to Mls-1a gene products, Proc. Natl. Acad. Sci. USA 86:6293 (1989).Google Scholar
  19. 19.
    A.M. Pullen, P. Marrack, and J.W. Kappler, The T-cell repertoire is heavily influenced by tolerance to polymorphic self-antigens, Nature 335:796 (1988).Google Scholar
  20. 20.
    D. Woodland, M.P. Happ, J. Bill, and E. Palmer, Requirement for cotolerogenic gene products in the clonal deletion of I-E reactive T cells, Science 247:964 (1990).Google Scholar
  21. 21.
    J. Bill, O. Kanagawa, D.L. Woodland, and E. Palmer, The MHC molecule I-E is necessary but not sufficient for the clonal deletion of Vβ11-bearing T cells, J. Exp. Med. 169:1405 (1989).Google Scholar
  22. 22.
    M.S. Vacchio, and R.J. Hodes, Selective decreases in T cell receptor Vβ expression. Decreased expression of specific Vβ families is associated with expression of multiple MHC and non-MHC gene products, J. Exp. Med. 170:1335 (1989).Google Scholar
  23. 23.
    P. Kisielow, H. Blüthmann, U.D. Staerz, M. Steinmetz, H. von Boehmer, Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes, Nature 333:742 (1988).Google Scholar
  24. 24.
    K.M. Murphy, A.B. Heimberger, and D.Y. Loh, Induction of antigen of intrathymic apoptosis of CD4+CD8+ TCRlo thymocytes in vivo, Science 250:1720 (1990).Google Scholar
  25. 25.
    M.K. Jenkins, and R.H. Schwartz, Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo, J. Exp. Med. 165:302 (1987).Google Scholar
  26. 26.
    M.K. Jenkins, P.S. Taylor, S.D. Norton, and K.B. Urdahl, CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells, J. Immunol. 147:2461 (1991).Google Scholar
  27. 27.
    D.L. Mueller, M.K. Jenkins and R.H. Schwartz, Clonal expansion versus functional clonal inactivation. A costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy, Ann. Rev. Immunol. 7:445 (1989).Google Scholar
  28. 28.
    C.H. June, J.A Ledbetter, P.S. Linsley, and C.B. Thompson, Role of the CD28 receptor in the T cell activation, Immunol. Today 11:211 (1990).Google Scholar
  29. 29.
    P.S. Linsley, W. Brady, L. Grosmaire, A. Aruffo, N.K. Damle, and J.A Ledbetter, Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation, J. Exp. Med. 173;721 (1991)Google Scholar
  30. 30.
    M. Azuma, M. Cayabyab, D. Buck, J.H. Phillips, and L.L. Lanier, CD28 interaction with B7 costimulates primary allogeneic proliferative responses and cytotoxicity mediated by small, resting T lymphocytes, J. Exp. Med. 175:353 (1992).Google Scholar
  31. 31.
    L. Koulova, E.A Clark, G. Shu, and B. Dupont, The CD28 ligand B7/BBI provides costimulatory signal for alloreactivation of the CD4+ T cells, J. Exp. Med. 173:759 (1991).Google Scholar
  32. 32.
    C. Kim, K.A. Siminovitch, and A. Ochi, Reduction of lupus nephritis in MRL/lpr mice by a bacterial superantigen treatment, J. Exp. Med. 174:1431 (1991).Google Scholar
  33. 33.
    S.-H. Rhim, S.E. Millar, F. Robey, A.M. Luo, Y.-H. Lou, T. Yule, P. Allen, J. Dean, and K.S.K. Tung, Autoimmune disease of the ovary induced by a ZP3 peptide from the mouse zona pellucida, J. Clin. Invest. 89:28 (1992).Google Scholar
  34. 34.
    J.P. Clayton, G.M. Gammon, D.G. Ando, K.H. Kono, L. Hood, and E.E. Sercarz, Peptide-specific prevention of experimental allergic encephalomyelitis. Neonatal tolerance induced to the dominant T cell determinant of myelin basic protein, J. Exp. Med. 169:1681 (1989).Google Scholar
  35. 35.
    G.M. Gammon, A. Oki, N. Shastri, and E.E. Sercarz, Induction of tolerance to one determinant on a synthetic peptide does not affect the response to a second linked determinant. Implications for the mechanism of neonatl tolerance induction, J. Exp. Med. 164:667 (1986).Google Scholar
  36. 36.
    G. Gammon, K. Junn, N. Shastri, A. Oki, S. Wilbur, and E.E. Sercarz, (1986) Neonatal T-cell tolerance to minimal immunogenic peptides is caused by clonal inactivation, Nature 319:413 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    J.M. Korostoff, M.T. Nakada, S.J. Faas, K.J. Blank, and G.N. Gaulton, Neonatal exposure to thymotropic Gross murine leukemia virus induces virus-specific immunologic nonresponsiveness, J. Exp. Med. 172:1765 (1990).Google Scholar
  38. 38.
    R. Michalides, R. van Nie, and R. Nusse, Mammary tumor induction loci in GR and DBAf mice contain one provirus of the mouse mammary tumor virus, Cell 23:165 (1981).Google Scholar
  39. 39.
    W.M. Kast, L. Roux, J. Curren, H.J.J. Blom, A.C. Voordouw, R.H. Meloen, D. Kolakofsky, and C.J.M. Melief, Protection against lethal Sendai virus infection by in vivo priming of virus-specific cytotoxic T lymphocytes with a free synthetic peptide, Proc. Natl. Acad. Sci. USA 88:2283 (1991).Google Scholar
  40. 40.
    T.N.M. Schumacher, M.L.H. de Bruijn, L.N. Vemie, W.M. Kast, C.J.M. Melief, J.J. Neefjes, and H.L. Ploegh, Peptide selection by MHC class I molecules, Nature 350:703 (1991).Google Scholar
  41. 41.
    T.N.M. Schumacher, M.-T. Heemels, J.J. Neefjes, W.M. Kast, C.J.M. Melief, and H.L. Ploegh, Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell 62:563 (1990).Google Scholar
  42. 42.
    M.L.H. de Bruijn, T.N.M. Schumacher, J.D. Nieland, H.L. Ploegh, W.M. Kast, and C.J.M. Melief, Peptide loading of empty MHC molecules on RMA-s cells allows induction of primary cytotoxic T lymphocytes responses, Eur. J. Immunol. 21:2963 (1991).Google Scholar
  43. 43.
    R.-H. Lin, M.J. Mamula, J.A. Hardin, and C.A. Janeway Jr., Induction of autoreactive B cells allows priming of autoreactive T cells, J. Exp. Med. 173:1433 (1991).Google Scholar
  44. 44.
    F. Healy, C. Drouet, P. Romero, C. Jaulin, and J.L. Maryanski, Conversion of a self peptide sequence into a Kd-restricted neo-antigen by a Tyr substitution, J. Exp. Med. 174:1657 (1991).Google Scholar
  45. 45.
    P.S. Ohashi, S. Oehen, K. Buerki, H. Pircher, C.T. Ohashi, B. Odermatt, B. Malissen, R.M. Zinkemagel, and H. Hengartner, Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice, Cell 65:305 (1991).Google Scholar
  46. 46.
    M.B.A. Oldstone, M. Nerenberg, P. Southern, J. Price, and H. Lewicki, Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of antiself (virus) immune response, Cell 65:319 (1991).Google Scholar
  47. 47.
    C.J.P. Boog, J. Boes, and C.J.M. Melief, Stimulation with dendritic cells decreases or obviates the CD4+ helper cell requirement in cytotoxic T lymphocyte responses, Eur. J. Immunol. 18:219 (1988).Google Scholar
  48. 48.
    J.J. Neefjes, “Cell Biological Aspects of MHC Class I and II Molecules”, Thesis, University of Amsterdam, The Netherlands, Rodopi, Amsterdam (1990).Google Scholar
  49. 49.
    M.L.H. de Bruijn, Mechanisms of antigen presentation to T lymphocytes, Thesis, University of Leiden, The Netherlands (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Ada M. Kruisbeek
    • 1
  • John D. Nieland
    • 1
  • Lori A. Jones
    • 1
  1. 1.Division of ImmunologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands

Personalised recommendations