Alteration of T Cell Lineage Commitment by Expression of a Hybrid CD8/CD4 Transgene

  • Rho H. Seong
  • Jane R. Parnes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 323)


Thymocyte differentiation and the subsequent production of peripheral functional T cells involve positive and negative selection events on developing thymocytes expressing a number of specific surface molecules, including the T cell receptor (TCR) and the coreceptor molecules CD4 and CDS. At least two different mechanisms may be responsible for the effects of CD4 and CDS on T cell development. CD4 binding to major histocompatibility complex (MHC) class II proteins1 and CDS binding to MHC class I proteins2 may increase the strength of interaction between the cells involved in the selection processes.3 Signal transduction through these coreceptors may also play an important role during thymocyte development. Recent evidence indicates that CD4 and CDS play important roles in signal transduction during T cell activation.4-9


Major Histocompatibility Complex Major Histocompatibility Complex Class Cytoplasmic Tail Major Histocompatibility Complex Molecule Hybrid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Doyle. and J.L. Strominger, Interaction between CD4 and class II MHC molecules mediates cell adhesion, Nature 330:56 (1987).Google Scholar
  2. 2.
    A. Norment, R.D. Salter, P. Parham, V.H. Englehard, and D.L. Littman, Cell-cell adhesion mediated by CD8 and MHC class I molecules, Nature 336:79 (1988).Google Scholar
  3. 3.
    R.H. Seong, C.H. Liaw, S. Michie, J.R Parnes, and J.W. Chamberlain, Effects of high level constitutive expression of transgenic CD8∝ on thymic selection, Submitted.Google Scholar
  4. 4.
    A. Veillette, A. Brookman, E.M. Horak, L.E. Samelson, and J.B. Bolen, Signal transduction through the CD4 receptor involves the activation of the internal membrane protein kinase p56lck, Nature 338:257 (1989).Google Scholar
  5. 5.
    A. Veillette, J.B. Bolen, and M.A. Brookman, Alteration in tyrosine phosphorylation induced by antibody-mediated cross-linking of CD4 receptor of T lymphocytes, Mol. Cell. Biol. 9:4441 (1989).Google Scholar
  6. 6.
    K. Luo and B.M. Sefton, Crosslinking of T cell surface molecules CD4 and CD8 stimulates phosphorylation of the lck tyrosine protein kinase at the autophosphorylation site, Mol. Cell. Biol. 10:5305 (1990).Google Scholar
  7. 7.
    R. Zamoyska, P. Durham, S.D. Gorman, P. von Hoegen, J.B. Bolen, A.V. Veillette, and J.R. Parnes, Inability of CD8∝’ polypeptide to associate with p56lck correlates with impaired function in vitro and lack of expression in vivo, Nature 342:278 (1989).Google Scholar
  8. 8.
    M.C. Miceli, P. von Hoegen, and J.R. Parnes, Coreceptor versus adhesion function of CD4 and CD8: role of the cytoplasmic tail in coreceptor activity, Proc. Natl. Acad. Sci. USA. 88:2623 (1991).Google Scholar
  9. 9.
    N. Glaichenhaus, N. Shastri, D.R. Littman, and J.M. Turner, Requirement for association of p561ck with CD4 in antigen-specific signal transduction in T cells, Cell 64:511 (1991).Google Scholar
  10. 10.
    H.-S. Teh, P. Kisielow, B. Scott, H. Kishi, H. Uematsu, Y. Bluthmann, and H. von Boehmer, Thymic major histocompatibility complex antigens and the alpha beta T-cell receptor determine the CD4/CD8 phenotype of T cells, Nature 335:229 (1988).Google Scholar
  11. 11.
    W.C. Sha, C.A. Nelson, R.D. Newberry, D.M. Kranz, J.H. Russel, and D.Y. Loh, Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice, Nature 335:271 (1988).Google Scholar
  12. 12.
    L.J. Berg, A.M. Pullen, B. Fazekas de St. Groth, D. Mathis, C. Benoist, and M.M. Davis, Antigen/MHC-specific T cells are preferentially exported from thymus in the presence of their MHC ligand, Cell 58:1035 (1989).Google Scholar
  13. 13.
    J. Kaye, M.-L. Hsu, M.-E. Sauron, S.C. Jameson, N.R. Gascoigne, and S.M. Hedrick, Selective development of CD4+ T cells in transgenic mice expressing class II MHC-restricted antigen receptor, Nature 341:746 (1989).Google Scholar
  14. 14.
    H. von Boehmer, P. Kisielow, H. Kishi, B. Scott, P. Borgulya, and H.-S. Teh, The expression of CD4 and CD8 accessory molecules on mature T cells is not random but correlates with the specificity of the ab receptor for antigen, Immunol. Rev. 109:144 (1989).Google Scholar
  15. 15.
    E.A. Robey, B.J. Fowlkes, and D.M. Pardoll, Molecular mechanisms for lineage commitment in T cell development, Semin. Immnol. 2:25 (1990).Google Scholar
  16. 16.
    E.A. Robey, B.J. Fowlkes, J.W. Gordon, D. Kioussis, H. von Bohmer, F. Ramsdell, and R. Axel, Thymic selection in CD8 transgenic mice supports an instructive model for commitment to a CD4 or CD8 lineage, Cell 64:99 (1991).Google Scholar
  17. 17.
    P. Borgulya, H. Kishi, U. Muller, J. Kirberg, and H. von Boehmer, Development of the CD4 and CD8 lineage of T cells: instruction versus selection, EMBO J. 10:913 (1991).Google Scholar
  18. 18.
    H.-S. Teh, H. Kishi, B. Scott, and H. von Bohmer, Deletion of autospecific T cells in T cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules, J. Exp. Med. 169:795 (1989).Google Scholar
  19. 19.
    J.A. Ledbetter, W. Seaman, T. Tsu, and L. A. Herzenberg, Ly-2 and Ly-3 antigens are on two different polypeptide subunits linked by disulfide bonds, J. Exp. Med. 153:1503 (1981).Google Scholar
  20. 20.
    P. Gunning, J. Leavitt, G. Muscat, S. Ng, and L. Kedes, A human β-actin expression vector system directs high-level accumulation of antisense transcripts, Proc. Natl. Acad. Sci. 84:4831 (1987).Google Scholar
  21. 21.
    S.D. Gorman, B. Tourvieille, and J.R. Parnes, Structure of the mouse gene encoding CD4 and an unusual transcript in brain, Proc. Natl. Acad. Sci. U.S.A. 84:7644 (1987).Google Scholar
  22. 22.
    R.H. Seong, J.W. Chamberlain, and J.R. Parnes, CD4 transmembrane region and/or cytoplasmic tail delivers a specific signal for T cell differrentiation to a CD4 cell lineage, Nature In press.Google Scholar
  23. 23.
    P. Kisielow, H. Bluthman, U.D. Staerz, M. Steinmetz, and H. von Boehmer, Tolerence in T-cell-receptor transgenic mice involves deletion of nonmature CD4+C08+ thymocytes, Nature 333:742 (1988).Google Scholar
  24. 24.
    P. Kisielow, S.-H. Teh, H. Bluthman, and H. von Boehmer, Positive selection of antigen-specific T cells in thymus by restricting MHC molecules, Nature 335:730 (1988).Google Scholar
  25. 25.
    M.J. Bevan and P. Fink, The influence of thymus H-2 antigens on the specificity of maturing killer and helper cells, Immunol. Rev. 269:417 (1977).Google Scholar
  26. 26.
    R.H. Zinkernagel, G. Callahan, A. Althage, S. Cooper, P. Klein, and J. Klein, On the thymus in the differentiation of H-2 self-recognition by T cells: evidence for dual recognition? J. Exp. Med. 147:882 (1978).Google Scholar
  27. 27.
    H. von Boehmer, W. Haas, and N.K. Jerne, Major histocompatibilitycomplex-linked immune-responsiveness is aquired by lymphocytes of low-responder mice differentiating in thymus of high-responder mice, Proc. Natl. Acad. Sci. U.S.A. 75:2434 (1978).Google Scholar
  28. 28.
    J. Kappler and P.J. Marrack, The role of H-2 linked genes in helper T cell function IV. Importance of T-cell genetype and host environment in I region and Ir gene expression, J. Exp. Med. 148:1510 (1978).Google Scholar
  29. 29.
    C.E. Rudd, J.M. Trevillyan, J.D. Dasgupta, L.L. Wong, and S.F. Schlossman, The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (Pp58) from human T lymphocytes, Proc. Natl. Acad. Sci. U.S.A. 85:5190 (1988).Google Scholar
  30. 30.
    A. Veillete, M.A. Bookman, E.M. Horak, and J.B. Bolen, The CD4 and CD8 Tcell surface antigens are physically associated with the internal membrane tyrosine kinase p56lck, Cell 55:301 (1988).Google Scholar
  31. 31.
    A. Veillete, J.C. Zuniga-Pflucker, J.B. Bolen, and A.M. Kruisbeek, Engagement of CD4 and CD8 expressed on immature thymocytes induces activation of intracellular tyrosine phosphorylation pathways, J. Exp. Med. 170:1671 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Rho H. Seong
    • 1
  • Jane R. Parnes
    • 1
  1. 1.Department of Medicine, Division of ImmunologyStanford University School of Medicine, Stanford UniversityStanfordUSA

Personalised recommendations