Skip to main content

Blockade of Proteolytic Activity Retards Retrograde Degeneration of Axotomized Retinal Ganglion Cells and Enhances Axonal Regeneration in Organ Cultures

  • Chapter
The Changing Visual System

Part of the book series: NATO ASI Series ((NSSA,volume 222))

Abstract

Observations concerning the consequences of injury to the central nervous system, to the spinal cord and to the retina of higher vertebrates can be traced back to the early decades of the century (Cajal, 1928; James, 1933; Eayrs, 1952). In accord with these observations, which have been confirmed later, the course of retrograde adult retinal ganglion cell degeneration commences a few days after intraorbital transection of the optic nerve and progresses during the weeks and months following the axotomy, finally resulting in depletion of the retinal ganglion cell layer (GCL) (Richardson et al. 1982; Barron et al. 1986; Thanos, 1988; Villegas-Perez et al. 1988; Carmignoto et al. 1989). The failure of lesioned ganglion cells to regrow their axons within the distal portion of the optic nerve is assumed to be caused by the presence of differentiated oligodendrocytes whose myelin exerts inhibiting influences both on embryonic (Schwab and Caroni, 1988) and on adult ganglion cell axons (Vanselow et al. 1990). In addition to the inhibiting environment, insufficient growth-supporting agents within the optic nerve (Cajal, 1928) have been assumed to determine the fate of lesioned neurons, namely the progressive degeneration. External neurotrophic influences introduced by the apposition of peripheral nerve segments at the time of severing the optic nerve could rescue some ganglion cells, which then can regenerate into growth-permitting peripheral nerve transplants (Vidal-Sanz et al. 1987; Villegas-Perez et al. 1988). Factors released from peripheral nerves also support regrowth of axons in cultured retinal explants (Thanos et al. 1989). The responsiveness of lesioned ganglion cells to external administration of nerve growth factor (NGF) during the first weeks after lesion (Carmignoto et al., 1989) is in line with all previous observations that epigenetic influences can regulate the quantities of neurons which survive axotomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barde, Y.A., D. Edgar, and H. Thoenen,1982, Purification of a new neurotrophic factor from mammalian brain. EMBO-J. 1:549–553.

    PubMed  CAS  Google Scholar 

  • Barron, K.D., M. P. Dentinger, G. Lrohel, S.K. Easton, and R. Mankes, 1986, Qualitative and ultrastructaral observations on retinal ganglion cell layer of rat after intraorbital nerve crush. J. Neurocvtol. 15: 345–362.

    Article  CAS  Google Scholar 

  • Bignami, A., and D. Dahl, 1979, The radial glia of Müller and their response to injury. An Immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein. Exp. Eve Res. 28: 63–69.

    Article  CAS  Google Scholar 

  • Cajal, R. y. S., 1928, Degeneration and regeneration of the nervous system. (R.M. May. Trans.) University Press, London and New York.

    Google Scholar 

  • Cammermeyer, J.,1970, The life history of the microglia cell: A light microscopic study. In: S. Ehrenpreis and O. C. Solnitzky (eds): Neurosciences Research, Vol. 3, Academic Press, New York, pp. 44–129.

    Google Scholar 

  • Carmignoto, G., L. Maffei, P. Candeo, R. Canella and C. Comelli, 1989, Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. J. Neurosci. 9: 1263–1272.

    PubMed  CAS  Google Scholar 

  • del Rio-Hortega, P., 1932, Microglia. In: Cytology and Cellular Pathology of the nervous system (eds. Penfield W.), pp. 482–534. Paul B. Hoeber, New York.

    Google Scholar 

  • Grafstein, B., and N.A. Ingoglia, 1982, Intracranial transection of the optic nerve in adult mice: Preliminary observations. Exp. Neurol. 76: 318–330.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D., 1987, Ameboid microglia as effectors of inlamation in the central nervous system. J. Neurosci. Res. 18:155–171.

    Article  PubMed  CAS  Google Scholar 

  • Giulian, D., J. Chen, J. E. Ingeman, J. K. George, and M. Noponen, 1989, The role of mononuclear phagocytes in wound-healing after traumatic injury to adult mammalian brain. J.Neurosci. 9(12): 4416–4429.

    PubMed  CAS  Google Scholar 

  • Giulian, D., 1990, Microglia and tissue damage in the central nervous system. In: Differentation and functioning of Glial cells, Ed. Levi, Alan R. Liss, pp. 379–389.

    Google Scholar 

  • Hickey, W.F., and H. Kimura, 1988, Perivascular microglial cells of the CNS are bone-derived and present antigen in vivo. Science, 239:290–292.

    Article  PubMed  CAS  Google Scholar 

  • Gebhard, W., H. Tschesche, and H. Fritz, 1986, Biochemistry of aprotinin and aprotinin-like inhibitors. In: proteinase inhibitors (A. J. Barrett and J. Salvesen, eds), Elsevier, pp. 375–378.

    Google Scholar 

  • James, G. R., 1933, Degeneration of ganglion cell following axonal injury. Arch. Ophthalmol. 9: 338–343.

    Google Scholar 

  • Keirstead, S.A., M. Rasminsky, Y. Fukuda, D.A. Carter, A.J. Aguayo and M. Vidal-Sanz, 1989, Electrophysiological responses in hamster superior colliculus evoked by regenerating retinal axons. Science, 246: 255–257.

    Article  PubMed  CAS  Google Scholar 

  • Lampson, L.A., 1987, Molecular basis of the immune response to neural antigens. TINS 10: 211–216.

    Google Scholar 

  • Lieberman, A. R., 1971, The axon reaction: A review of the principal features of perikaryal responses to axon injury. Int. Rev. Neurobiol. 14: 49–124.

    Article  PubMed  CAS  Google Scholar 

  • Murabe, Y., and Y. Sano, 1981, Thiaminepyrophosphatase activity in the plasma membrane of microglia. Histochem. 71: 45–52.

    Article  CAS  Google Scholar 

  • Perry, V. H., 1979, The ganglion cell layer in the retina of the rat. Proc. R. Soc. Lond. B204: 363–375.

    Article  Google Scholar 

  • Perry, V. H., and S. Gordon, 1988, Macrophages and microglia in the nervous system. TINS, Vol. 11, No. 6, 273–277.

    PubMed  CAS  Google Scholar 

  • Politis, M.J., and P. S. Spencer, 1986, Regeneration of rat optic axons into peripheral nerve grafts. Exp. Neurol. 91: 52–59.

    Article  PubMed  CAS  Google Scholar 

  • Powers, C. J. and J. W. Harper, 1986, Inhibitors of serine proteases. In: Proteinase inhibitors (A. J. Barrett and G. S. Salvesen, eds) Elsevier, pp. 55–152.

    Google Scholar 

  • Rich, D. H., 1986, Inhibitors of cysteine proteinases. In: proteinase inhibitors (A. J. Barrett and G. salvesen, eds.) Elsevier, pp. 179–217.

    Google Scholar 

  • Schnebli, H. P., 1975, The effects of protease inhibitors on cells in vitro. In: Proteases and Biological Control. (Eds. E. Reich, D. B. Rifkin and E. Shaw), Cold Spring Harbor Conferences on cell proliferation. pp. 785–794.

    Google Scholar 

  • Schnitzer J. and J. Scherer, 1990, Microglial cell responses in the rabbit retina following transection of the optic nerve. J. Comp. Neurol. 302: 779–791.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, M.E. and P. Caroni, 1988, Oligodendrocytes and CNS myelin are non-permissive for neurite growth and fibroblast spreading in vitro. J. Neurosci.8: 2381–2393.

    PubMed  CAS  Google Scholar 

  • Sievers, J., Hausmann, B., Unsicker, K., and M. Berry, 1987, Fibroblast growth factors promote the survival of adult rat retinal ganglion cells after transection of the optic nerve. Neurosci. Lett. 76: 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Singer, P.A., S. Mehler, and H. L. Fernandez, 1982, Blockade of retrograde axonal transport delays the onset of metabolic and morphologic changes induced by axotomy. J. Neurosci. 2: 1299–1306.

    PubMed  CAS  Google Scholar 

  • Stoll, G., B.D. Trapp, and J.W. Griffin, 1989, Macrophage function during Wallerian degeneration of the rat optic nerve: Clearance of degenerating myelin and Ia expression. J. Neurosci. 9: 2327–2335.

    PubMed  CAS  Google Scholar 

  • Streit, W.J., M.B. Graeber and G.W. Kreutzberg, 1990, Functional plasticity of microglia: a review GLIA, 1(5) 301–307.

    Article  Google Scholar 

  • Tello, F., 1907, La regeneration de voies optigues. Trab. Lab. Invest. Biol. 5: 237–248.

    Google Scholar 

  • Thanos, S., 1988, Alterations in the morphology of ganglion cell dendrites in the adult rat retina after optic nerve transection and grafting of peripheral nerve segements. Cell Tiss. Res. 259: 599–609.

    Google Scholar 

  • Thanos, S., M. Bähr, Y. A. Barde, and J. Vanselow, 1989, Survival and axonal elongation of adult rat retinal ganglion cells. In vitro effects of lesioned sciatic nerve and brain derived-neurotrophic factor. E. J. Neurosci. 1: 19–26.

    Article  Google Scholar 

  • Thanos, S. and J. Vanselow, 1990, Fetal tectal transplants in the cortex of adult rats become innervated both by retinal ganglion cell axons regenerating through peripheral nerve grafts and by cortical neurons. Rest. Neurol. Neurosci. 2: 63–75.

    CAS  Google Scholar 

  • Vanselow, J., M. E. Schwab and S. Thanos, 1990, Responses of regenerating rat retinal ganglion cell axons to contacts with central nervous myelin in vitro. E.J. Neurosci. 2: 121–125.

    Article  Google Scholar 

  • Vidal-Sanz, M., G. M. Bray, M. P. Villegas-Perez, S. Thanos and A. J. Aguayo, 1987, Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J. Neurosci. 7: 2894–2909.

    PubMed  CAS  Google Scholar 

  • Villegas-Perez, M. P., Vidal-Sanz, M., G. M. Bray and Albert Aguayo, 1988, Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J. Neurosci. 8(1): 265–280.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thanos, S. (1991). Blockade of Proteolytic Activity Retards Retrograde Degeneration of Axotomized Retinal Ganglion Cells and Enhances Axonal Regeneration in Organ Cultures. In: Bagnoli, P., Hodos, W. (eds) The Changing Visual System. NATO ASI Series, vol 222. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3390-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3390-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6497-9

  • Online ISBN: 978-1-4615-3390-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics