Skip to main content

Development and Plasticity of the Tectofugal Visual Pathway in the Zebra Finch

  • Chapter
The Changing Visual System

Part of the book series: NATO ASI Series ((NSSA,volume 222))

  • 151 Accesses

Abstract

In the recent years the development of the visual system of mammals and its alterability by environmental influences has been addressed by hundreds of investigations. Detailed knowledge on the development and plasticity of the visual cortex, for example, has been accumulated for a variety of mammals, in particular cats and monkeys (rev. Fregnac and Imbert 1984). In contrast, very few studies were concerned with the development of higher stations of the visual system of other vertebrates. In birds, for example, the retinotectal projection of the chick tectofugal pathway is one of the best investigated paradigms for the development of the specificity of neuronal connections and axonal pathfinding (see Thanos, this volume); however, there were almost no developmental studies of other stations of the tectofugal pathway until recently. In one of the earliest studies Pettigrew and Konishi (1976a,b) showed that the visual wulst has physiological properties very similar to those of the visual cortex in mammals, and that monocular deprivation in these animals induces the same shift in ocular dominance of wulst neurons as it was observed in area 17 of the cat or the monkey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagnoli, P., Francesconi, W., and Magni, F., 1982, Visual wulst - optic tectum relationships in birds: a comparison with the mammalian corticotectal system. Archives Italienne de Biologie, 120: 212–235.

    CAS  Google Scholar 

  • Bischof, H.-J., 1980, The visual field and visually guided behavior in the zebra finch. Journal of Comparative Physiology A, 163: 329–337.

    Article  Google Scholar 

  • Bischof, H.-J., and Niemann, J., 1990, Contralateral projections of the optic tectum in the zebra finch (Taeniopygia guttata castanotis). Cell and Tissue Research, 262: 307–313.

    Article  Google Scholar 

  • Blakemore, C., 1978, Developmental factors in the formation of feature extracting neurons, in: “The Neurosciences: Third Study Program,” F.O. Schmitt and F.G. Worden, eds., pp. 105–113, MIT Press, Cambridge, MA.

    Google Scholar 

  • Bravo, H., and Pettigrew, J.D., 1981, The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia Journal of Comparative Neurology, 199: 419–441.

    Article  PubMed  CAS  Google Scholar 

  • Bredenkötter, M., and Bischof, H.-J., 1990, Differences between ipsilaterally and contralaterally evoked potentials in the visual wulst of the zebra finch, Visual Neuroscience, 5: 155–163.

    Article  PubMed  Google Scholar 

  • Changeux, J.P., and Danchin, A., 1976, Selective stabilization of developing synapses as a mechanism for the specification of neuronal networks, Nature, 264: 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Chow, K.L., and Spear, P.D., 1974, Morphological and functional effects of visual deprivation on the rabbit visual system, Experimental Neurology, 46: 429–447.

    Article  Google Scholar 

  • Cragg, B., Anker, R., and Wan, Y.K., 1975, The effect of age and reversibility of cellular atrophy in the LGN of the cat following monocular deprivation: A test of two hypotheses about cell growth, Journal of Comparative Neurology, 168: 345–354.

    Article  Google Scholar 

  • Engelage, J., and Bischof, H.-J., 1988, Enucleation enhances ipsilateral flash evoked responses in the ectostriatum of the zebra finch (Taeniopygia guttata castanotis, Gould), Experimental Brain Research, 70: 79–89.

    CAS  Google Scholar 

  • Engelage, J., and Bischof, H.-J., 1989, Flash evoked potentials in the ectostriatum of the zebra finch: A current source density analysis, Experimental Brain Research, 74: 563–572.

    Article  CAS  Google Scholar 

  • Engelage, J. and Bischof, H.-J. (1990) Development of flash evoked responses in the ectostriatum of the zebra finch: An evoked potential and current source density analysis. Visual Neuroscience, 5: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Fregnac, Y., and Imbert, M., 1984, Development of neuronal selectivity in primary visual cortex of cat, Physiological Reviews, 64: 325–434.

    PubMed  CAS  Google Scholar 

  • Herrmann, K., and Bischof, H.-J., 1986a, Delayed development of song control nuclei in the zebra finch is related to behavioral development, Journal of Comparative Neurology, 245: 167–175.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, K., and Bischof, H.-J., 1986b, Monocular deprivation affects neuron size in the ectostriatum of the zebra finch brain, Brain Research, 379: 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, K., and Bischof, H.-J., 1986e, Effects of monocular deprivation in the nucleus rotundus of zebra finches: A deoxyglucose and Nissl study, Experimental Brain Research, 64: 119–128.

    Article  CAS  Google Scholar 

  • Herrmann, K., and Bischof, H.-J., 1988, The sensitive period for the morphological effects of monocular deprivation in two nuclei of the tectofugal pathway of zebra finches, Brain Research, 451: 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, K., and Bischof, H.-J., 1988b, The development of neurons in the ectostriatum of normal and monocularly deprived zebra finches: A quantitative Golgi study, Journal of Comparative Neurology, 277: 141–154.

    Article  PubMed  CAS  Google Scholar 

  • Hickey, T.L., Spear, P.D., and Kratz, K.E., 1977, Quantitative studies of cell size in the cat’s dorsal geniculate nucleus following visual deprivation, Journal of Comparative Neurology, 172: 265–282.

    Article  PubMed  CAS  Google Scholar 

  • Hodos, W., and Karten, H.J., 1966, Intensity difference thresholds in pigeons after lesions of the tectofugal and thalamofugal pathways, Experimental Brain Research, 2: 151–167.

    Article  CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N., 1970, The period of susceptibility to the physiological effects of unilateral eye closure in kittens, Journal of Physiology (London), 208: 419–436.

    Google Scholar 

  • Karten, H.J., 1969, The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon, Annals of the New York Academy of Sciences, 167: 164–179.

    Article  Google Scholar 

  • Karten, H.J., and Shimizu, T., 1989, The origins of the neocortex: Connections and lamination as distinct events in evolution, Journal of Cognitive Neuroscience, 1: 291–301.

    Article  Google Scholar 

  • LeVay, S., and Stryker, M.P., 1979, The development of ocular dominance columns in the cat, Society of Neuroscience Symposium, 4: 83–98.

    Google Scholar 

  • Llinas, R., and Nicholson, C., 1974, Analysis of field potentials in the central nervous system, in: “Handbook of EEG and Clinical Neurophysiology,” A. Remond, ed.; “Part II: Electrical Activity from the Neuron to the EEG and EMG,” O. Creutzfeldt, ed., pp. 62–92, Elsevier, Amsterdam.

    Google Scholar 

  • Mitzdorf, U., 1985, Current source density method and application in cat cerebral cortex: Investigation of evoked potential and EEG phenomena, Physiological Review, 65: 37–100.

    CAS  Google Scholar 

  • Murphy, E.H., 1984, Critical periods and the development of the rabbit visual cortex, in: “Development of Visual Pathways in Mammals,” J. Stone, B. Dreher, D.H. Rappaport, eds., pp. 429–462, Allan R. Liss, New York.

    Google Scholar 

  • Nixdorf, B.E., and H.-J. Bischof, 1986, Posthatching development of synapses in the neuropil of nucleus rotundus of the zebra finch: A quantitative electron microscopic study, Journal of Comparative Neurology, 250: 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Nixdorf, B.E., and H.-J. Bischof, 1987, Ultrastructural effects of monocular deprivation in the neuropil of nucleus rotundus in the zebra finch: A quantitative electron microscopic study, Brain Research, 405: 326–336.

    Article  PubMed  CAS  Google Scholar 

  • Nixdorf, B.E., 1990, Monocular deprivation alters the development of synaptic structure in the ectostriatum of the zebra finch Synapse, 5: 224–232.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J.D., and Konishi, M., 1976a, Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl, Tyto alba, Science, 193: 675–678.

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew, J.D., and Konishi, M., 1976b, Effects of monocular deprivation on binocular neurons in the owl’s visual wulst, Nature, 264: 753–754.

    Article  PubMed  CAS  Google Scholar 

  • Remy, M., and Güntürkün, 0., 1991, Retinal afferents to the tectum opticum and the nucleus opticus principalis thalami in the pigeon, Journal of Comparative Neurology, 305: 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Robert, F., and Cuenod, M., 1969, Electrophysiology of the intertectal commissures in the pigeon. I. Analysis of the pathways, Experimental Brain Research, 9: 116–122.

    CAS  Google Scholar 

  • Shimizu, T., and Karten, H.J., 1990, Immunohistochemical analysis of the visual wulst of the pigeon (Columba livia), Journal of Comparative Neurology, 300: 346–369.

    Article  PubMed  CAS  Google Scholar 

  • Wiesel, T., 1982, Postnatal development of the visual cortex and the influence of the environment, Nature, 299: 583–591.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bischof, H ., Herrmann, K., Engelage, J. (1991). Development and Plasticity of the Tectofugal Visual Pathway in the Zebra Finch. In: Bagnoli, P., Hodos, W. (eds) The Changing Visual System. NATO ASI Series, vol 222. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3390-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3390-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6497-9

  • Online ISBN: 978-1-4615-3390-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics