Skip to main content

Modeling of Invar Properties from Electronic Structure Calculations

  • Chapter
Structural and Phase Stability of Alloys

Abstract

It is shown how super cell (SC) total energy calculations can be instructive for the understanding of invar anomalies. The occurence of volume and magnetic instabilities in some invar system is explained from band theory results obtained at zero temperature, for magnetic and non-magnetic ground states. The total energy separation of different magnetic configurations near invar compositions is almost zero, but the difference in lattice spacing of each configurations plays an important role and is strongly related to the compositions and chemical constituents of the alloy. Moreover, it is found that anti-ferromagnetic ordering in some fcc iron based metallic systems prevents the formation of stable anti-invar materials. Anti-invar anomalies are predicted in Zr-V and Ti-V system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. F. Wasserman, Phys. Scr. T25, 209 (1989).

    Article  Google Scholar 

  2. S. G. Steinemann, J Magn. Magn. Mat. 7, 84 (1978).

    Article  Google Scholar 

  3. R. J. Weiss, Proc. Phys. Soc., 82, 281 (1963).

    Article  Google Scholar 

  4. A. R. Williams, V. L. Moruzzi, C. D. Gelatt, J. Kubler and K. Schwarz, J. Appl. Phys. 53, 2019 (1980).

    Article  Google Scholar 

  5. E. G. Moroni and T. Jarlborg, Phys. Rev. B41, 9600 (1990).

    Google Scholar 

  6. P. Mohn, K. Schwarz, and D. Wagner, Phys. Rev. B, (1991).

    Google Scholar 

  7. G. Arbman and T. Jarlborg, J. Phys. F7, 1635 (1977).

    Google Scholar 

  8. V. L. Moruzzi, Phys. Rev. B41, 6939 (1990).

    Google Scholar 

  9. J. W. D. Connolly and A. R. Williams, Phys. Rev. B27, 5169 (1983).

    Google Scholar 

  10. A. Chamberod, J. Laughier and J. M. Penisson, J. Magn. Magn. Mat. 10, 139 (1979).

    Article  Google Scholar 

  11. A. P. Miodownik, J. Magn. Magn. Mat. 10, 126 (1979).

    Article  Google Scholar 

  12. J. K. Van Deen and F. Van Der Woude, Acta Metall. 29, 1255 (1981).

    Article  Google Scholar 

  13. M. M. Abd-Elmeguid and H. Micklitz, Physica B 161, 17 (1989).

    Article  Google Scholar 

  14. C. S. Wang, B. M. Klein, and H. Krakauer, Phys. Rev. Lett. 54, 1852 (1985).

    Article  Google Scholar 

  15. B. Barbiellini, E. G. Moroni, and T. Jarlborg, J. Phys. Cond. Matt. 2, 7597 (1990).

    Article  Google Scholar 

  16. B. Barbiellini, E. G. Moroni and T. Jarlborg, Heiv. Phys. Acta 64, 164 (1991).

    Google Scholar 

  17. V. L. Moruzzi, P. M. Marcus and J. Kübler, Phys. Rev. B39, 6957 (1989).

    Google Scholar 

  18. D. D. Johnson, F. J. Pinski and G. M. Stocks, J. Appl. Phys. 57, 1 (1985).

    Article  Google Scholar 

  19. K. Sumiyama, M. Shiga, and Y. Nakamura, J. Magn. Magn. Mater. 31–34, 111 (1983).

    Article  Google Scholar 

  20. O. Caporaletti and G. M. Graham, J. Magn. Magn. Mater. 22, 25 (1980).

    Article  Google Scholar 

  21. K. Schwarz, P. Mohn, P. Blaha, and J. Kühler, J. Phys. F 14, 2659 (1984).

    Article  Google Scholar 

  22. S. K. Burke and B. D. Rainford, J. Phys. F 8, L239 (1978).

    Article  Google Scholar 

  23. V. E. Rode, S. A. Finkelberg and A. I. Lyalin, J. Magn. Magn. Mater. 31–34, 293 (1983).

    Article  Google Scholar 

  24. E. G. Moroni and T. Jarlborg, in Proceedings of the ICM’91 Conference, to appear in J. Magn. Magn. Mater., (1991).

    Google Scholar 

  25. K. Adachi et al.,IEEE Trans. Magnetics 5, 693 (1972).

    Article  Google Scholar 

  26. T. Jarlborg and A. J. Freeman, Phys. Rev. B22, 2332 (1980).

    Google Scholar 

  27. S. S. Peng and H. J. F. Jansen, Phys. Rev. B43, 3518 (1991).

    Google Scholar 

  28. A. Kootte, C. Haas, and R. A. de Groot, J. Phys.: Condens. Matter. 3, 1133 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moroni, E.G., Jarlborg, T. (1992). Modeling of Invar Properties from Electronic Structure Calculations. In: Morán-López, J.L., Mejía-Lira, F., Sanchez, J.M. (eds) Structural and Phase Stability of Alloys. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3382-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3382-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6493-1

  • Online ISBN: 978-1-4615-3382-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics