Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 311))

Abstract

A great diversity of forms of multicellular organisms having come into being during animal evolution has determined the exclusively structural and functional variety of their muscles differing, particularly, in their mode of activation. In vertebrate twitch muscles a crucial step in excitation- contraction (E-C) coupling concerns the mechanisms whereby the electrical activity of the T-tubular membrane (TTM) induces the release of Ca2+ from the sarcoplasmic reticulum (SR). The investigation of this key question of the E-C coupling has resulted in two principal hypotheses about the nature of the T-SR signal transmission: (i) Ca2+ release from SR triggered by a change in tubular membrane polarization and (ii) Ca2+ release induced by specific chemical transmitter from the T-system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, R.H., Chandler, W.K., and Rakowski, R.F., 1976, Charge movement and mechanical repriming in skeletal muscle, J. Physiol. (L.), 254: 351.

    Google Scholar 

  • Bezamilla, F., and White, M.M., 1986, Properties of Ionic Channels in Excitable Membranes, in: “Physiology of Membrane Disorders”, II ed., T. Andreoli et al., eds. Plenum Med. Book Company, N.Y. and L.

    Google Scholar 

  • Bridge, J.H.B., Smolley, J.R., Spitzer, K.W., 1990, The Relationship Between Charge Movements Associated with Ica and INa-Ca. in Cardiac Myocytes, Science, 148: 376.

    Article  Google Scholar 

  • Caillé, J., Ildefonse, M., and Rougier, O., 1978, Existence of a sodium current in the tubular membrane of frog twitch muscle fibre; its possible role in the activation of contraction, Pflügers Arch., 374: 167.

    Article  PubMed  Google Scholar 

  • Caillé, J., Ildefonse, M., and Rougier, O., 1979, Evidence for an action of sodium ions in the activation of sodium ions in the activation of contraction of twitch muscle fibre, Pflügers Arch., 379: 117.

    Article  PubMed  Google Scholar 

  • Caswell, A.H., and Bzandt, N.R., 1981. Ion induced release of calcium from isolated sarco-plasmic reticulum, J. Membrane Biol., 58: 21.

    Article  CAS  Google Scholar 

  • Curtis, B.A., 1988, Na/Ca exchange and excitation-contraction coupling in frog fast fibres, J. Muscle Res. and Cell Motil., 9: 415.

    Article  CAS  Google Scholar 

  • Donoso, P., and Hidalgo, C., 1989, Sodium-calcium exchange in transverse tubules isolated from frog skeletal muscle, Biochem. Biophys. Acta, 978: 8.

    Article  PubMed  CAS  Google Scholar 

  • Endo, M., 1977, Calcium release from the sarcoplasmic reticulum, Physiol. Rev., 57: 71.

    PubMed  CAS  Google Scholar 

  • Fabiato, A., 1985, Time and calcium dependence of activation and inactivation of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Puzkinje cell, J. Gen. Physiol., 85: 247.

    Article  PubMed  CAS  Google Scholar 

  • Frank, G.B., 1980, The current view of the source of trigger calcium in excitation-contraction coupling in vertebrate skeletal muscle, Biochem. Pharmacol., 29: 2399.

    Article  PubMed  CAS  Google Scholar 

  • Frank, G.B., 1982, Roles of extracellular and “trigger” calcium ions in excitation-contraction coupling in skeletal muscle, Can. J. Physiol. Pharmacol., 60: 427.

    Article  PubMed  CAS  Google Scholar 

  • Frank, G.B., 1984, Blockade of Ca2+ channels inhibits K+ contracture but not twitches in skeletal muscle, Can. J. Physiol. Pharmacol., 62: 374.

    Article  PubMed  CAS  Google Scholar 

  • Frank, G.B., 1990, Dihydropyridine calcium channel antagonists block and agonists potentiate high potassium contracture but not twitches in frog skeletal muscle, J.J. Physiol., 40: 205.

    CAS  Google Scholar 

  • Franzini-Armstrong, C., and Nunzi, G. 1983, Functional feet and particles in the triads of a fast twitch muscle fiber, J. Muscle Res. Cell Motil, 4:233.

    Article  PubMed  CAS  Google Scholar 

  • Gonzales-Serratos, M., Valle-Aguilera, R., Lathrop, R., del Carmen Garcia, M., 1982, Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling, Nature, 298: 292.

    Article  Google Scholar 

  • Hui, C.S., Milton, R.L., and Eisenberg, R.S., 1984, Charge movement in skeletal muscle fibres paralysed by the calcium-entry blocker to 600, Proc. Natl. Acad. Sci. USA, 81: 2582.

    Article  PubMed  CAS  Google Scholar 

  • Jaimovich, E., Venosa, R.A., Shrarger, P., Horowicz, P., 1976, Density and distribution of tetrodotoxin receptors in normal and detubulated frog sartorius muscle, J. Gen. Physiol., 67: 399.

    Article  PubMed  CAS  Google Scholar 

  • Kim, D.H., Ohnishi, S.T., Ikemoto, N., 1983, Kinetic studies of calcium release from sarcoplasmic reticulum in vitro, J. Biol. Chem., 258: 9662.

    PubMed  CAS  Google Scholar 

  • Kirsch, G.E., Nichols, R.A., and Nakajima, S., 1977, Delayed rectification in the transverse tubules, J.J. Gen. Physiol., 70: 1.

    Article  CAS  Google Scholar 

  • Kovács, L., Rîos, E., and Schneider, M.R., 1979, Calcium transients and intramembrane charge movement in skeletal muscle, Nature (L.), 179: 391.

    Article  Google Scholar 

  • Lea, T.J., Griffiths, P.J., Tregear, R.T., and Ashley, C.C., 1986, An examination of the ability of inositol, 1,4,5-trisphosphate to induce calcium release and tension development in skinned skeletal muscle fibres of frog and crustacea, FEBS Lett., 207: 153.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc, N., and Hume, R., 1990, Sodium Current-Induced Release of Calcium from Cardiac Sarcoplasmic Reticulum, Science, 248: 372.

    Article  PubMed  CAS  Google Scholar 

  • Lüttgau, H.C., Gottschalk, G., and Berwe, D., 1986, The role of Ca2+ in inactivation and paralysis of excitation-contraction coupling in skeletal muscle, Fortschr. Zoologie, 33: 195.

    Google Scholar 

  • Lüttgau, H.C., and Spiecker, W., 1979, The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog, J. Physiol. (L.), 296:411.

    PubMed  Google Scholar 

  • Lüttgau, H.C., and Stephenson, G.D., 1986. Ion movements in skeletal muscle in relation to the Activation of Contraction, in: “Physiology of Membrane Disorders”, II ed., T. Andreoli et al, eds, Plenum Med. Book Company, N.Y and L.

    Google Scholar 

  • Mikos, G.L., and Snow, T.R., 1987, Failure of inositol 1,4,5-trisphosphate to elicit or potentiate Ca2+ release from isolated skeletal muscle sarcoplasmic reticulum, Biochem. Biophvs. Acta, 927: 256.

    Article  CAS  Google Scholar 

  • Nesterov, V.P., 1975, Membrane translocations of Na+ in skeletal muscles function, in: “Structure and Functions of Biological Membranes”, Nauka, Moscow.

    Google Scholar 

  • Nesterov, V.P., 1985, On the mechanisms of Na+ (Li+) involvement in the skeletal muscle intracellular signal transmission, Sechenov Physiol. J. of USSR, 71: 985.

    CAS  Google Scholar 

  • Nesterov, V.P., 1988, Possible mechanisms of Na+-induced release of calcium ions from the sarcoplasmic reticulum of skeletal muscle fibres of vertebrates, Physiol. J. (Rus.) 34: 60.

    CAS  Google Scholar 

  • Nesterov, V.P., and Fedorov, V.V., 1971, On the possible role of Na and K ions in electro-mechanical coupling, J. Evol. Boich. Physiol. (Rus.), 7: 303.

    CAS  Google Scholar 

  • Nesterov, V.P., and Senchenkova, A.A., 1975, On the mechanisms of the excitation-contraction coupling in the frog phasic muscle fibres, Cytology, (Rus.), 17: 167.

    CAS  Google Scholar 

  • Potreau, D., and Raymond, G., 1982, Existence of a sodium-induced calcium release mechanisms on frog skeletal muscle fibres, J. Physiol., 333: 463.

    PubMed  CAS  Google Scholar 

  • Schneider, M.F. and Chandler, W.K., 1973, Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction-coupling, Nature (L.). 242: 244.

    Article  CAS  Google Scholar 

  • Stanfield, P.R., and Ashcroft, F.M., 1982, Calcium currents of frog and insect skeletal muscle fibres measured during voltage clamp, Can. J. Physiol, and Pharmacol., 60: 508.

    Article  CAS  Google Scholar 

  • Varsanyi, M., Messer, M., and Brandt, N.R., 1989, Intracellular localization of inositol-phospholipid-metabolizing enzymes in rabbit fast-twitch skeletal muscle, Eur. J. Biochem., 179: 473.

    Article  PubMed  CAS  Google Scholar 

  • Venosa, R.A., 1974, Inward movement of sodium ions in resting and stimulated frog’s sartorius muscle, J. Physiol., 241: 155.

    PubMed  CAS  Google Scholar 

  • Vergara, J., Tsien, R.Y., and Delay, M., 1985, Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle, Proc. Natl. Acad. Sci. USA, 82: 6352.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., Di Virgilio, F., Pozzan, T., and Salviati, G., 1986, Role of inositol 1,4,5-trisphosphate in excitation-contraction coupling in skeletal muscle, FEBS Lett., 197: 1.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., Salviati, G., Di Virgilio, F., and Pozzan, T., 1985, Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle, Nature, 316: 347.

    Article  PubMed  CAS  Google Scholar 

  • Walker, J.W., Somlyo, A.V., Goldman, Y.E., Somlyo, A.P., and Trentham, D.R., 1987, Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate, Nature (L.) 327: 249.

    Article  CAS  Google Scholar 

  • Yonemura, K., and Sato, M., 1967, The testing membrane potential and cation movement in frog muscle fibers after exposure to lithium ions, J.J. Physiol., 17: 678.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nesterov, V. (1992). The Significance of Na+ in E-C Coupling in Muscle. In: Frank, G.B., Bianchi, C.P., ter Keurs, H.E.D.J. (eds) Excitation-Contraction Coupling in Skeletal, Cardiac, and Smooth Muscle. Advances in Experimental Medicine and Biology, vol 311. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3362-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3362-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6483-2

  • Online ISBN: 978-1-4615-3362-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics