Skip to main content

Development and Validation of a Sponge Model for Quantitative Studies on Angiogenesis

  • Chapter
Book cover Angiogenesis in Health and Disease

Part of the book series: NATO ASI Series ((NSSA,volume 227))

Abstract

The assays for angiogenesis in current use include the corneal micropocket technique (Gimbrone et al., 1974; Leibovich et al., 1987), chick embryo chorioallantoic membrane (Auerbach et al., 1974; Crum et al., 1985), the hamster cheek pouch (Greenblatt & Shubik,1968; Schrieber et al., 1986), and rat dorsal air sac (Folkman et al., 1971; Ingber et al., 1990). The development of these methods in the 1970s was instrumental in the discovery, purification and biochemical characterisation of angiogenic factors and inhibitors. However, these models, with the exception of the corneal assay, are only qualitative or semi-quantitative. Thus Vallee et al. (1985) concluded that “none of the procedures available for studying angiogenesis is ideal and that the design and verification of specific and reproducible methodology remains an imperative of the highest priority”. In the last five years, several new models have been developed, e.g. subcutaneous implantation of plastic chambers (Dvorak et al., 1987) or porous polytetrafluoroethylene tubes (Sprugel et al., 1987). In addition, techniques involving the subcutaneous implantation of sterile sponges into experimental animals have become popular (Davidson et al., 1985; Fajardo et al., 1988; Kusaka et al., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrade, S.P., Fan, T.-P.D., and Lewis, G.P., 1987, Quantitative in-vivo studies on angiogenesis in a rat sponge model, Br. J. exp. Path., 68:755.

    CAS  Google Scholar 

  • Auerbach, R., Kubai, L., Knighton, D., and Folkman, J., 1974, A simple procedure for the long term cultivation of chicken embryos. Dev. Biol. 41:391–394.

    Article  PubMed  CAS  Google Scholar 

  • Broadley, K.N., Aquino, A.M., Woodward, S.C., Buckley-Sturrock, A., Sato, Y., Rifkin, D.B., and Davidson, J.M., 1989, Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair, Lab. Invest., 61:571–575.

    PubMed  CAS  Google Scholar 

  • Buckley, A., Davidson, J.M., Kamerath, C.D., and Woodword, S.C., 1987, Epidermal growth factor increases granulation tissue formation dose dependently, J. Surg. Res., 43:322–328.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, A., Davidson, J.M., Kamerath, C.D., Wolt, T.B., and Woodword, S.C., 1985, Sustained release of epidermal growth factor accelerates wound repair, Proc. Natl. Acad. Sci., USA; 82:7340–7344.

    Article  PubMed  CAS  Google Scholar 

  • Ciomei, M., Pesenti, E., Sola, F., Pastori, W., Mariani, M., Grandi, M., and Spreafico, F., 1991, Antagonistic effect of suramin on bFGF: in vitro and in vivo results, Int. J. Radiat. 60:78.

    Article  Google Scholar 

  • Crum, R., Szabo, S., and Folkman, J., 1985, A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment, Science, 230:1375–1378.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, J.M., Klagsbrun, M., Hill, K.E., Buckley, A., Sullivan, R., Brewer, P.A., and Woodward, S.C., 1985, Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor, J. Cell Biol., 100:1219.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak, H.F., Harvey, V.S., Estrella, P., Brown, L.F., McDonagh, J., and Dvorak, A.M., 1987, Fibrin containing gels induce angiogenesis. Implications for tumor stroma generation and wound healing, Lab. Invest., 57:673–686.

    PubMed  CAS  Google Scholar 

  • Fajardo, L.F., Kowalski, J., Kwan, H.H., Prionas, S.D., and Allison, A.C., 1988, The disc angiogenesis system, Lab. Invest., 58:718–724.

    PubMed  CAS  Google Scholar 

  • Fan, T.-P.D., and Hu, D.-E., 1991, Modulation of angiogenesis by inflammatory polypeptides, Int. J. Radiat. Biol., 60:71.

    Article  Google Scholar 

  • Fan, T.-P.D., Hu, D.E., Smither, R.L. and Gresham, G.A., (in press) Further studies on angiogenesis in a rat sponge model, in: “Angiogenesis,” P.B. Weisz., R. Langer and R. Steiner, ed., Karger AG, Basel, New York and Tokyo.

    Google Scholar 

  • Fernandez, L.A., Twickler, J. and Mead, A., 1985, Neovascularization produced by angiotensin II J. Lab. Clin. Med., 105:141–146

    PubMed  CAS  Google Scholar 

  • Folkman, J., Merler, E., Abernathy, C., and Williams, G., 1971, Isolation of a tumor factor responsible for angiogenesis, J. Exp. Med. 133:275–288.

    Article  PubMed  CAS  Google Scholar 

  • Ford, H.R., Hoffman, R.A., Wing, E.J., Magee, D.M., McIntyre, L.A., and Simmons, R.L., 1989, Characterization of wound cytokines in the sponge matrix model, Arch. Surg., 124:1422–1428.

    Article  PubMed  CAS  Google Scholar 

  • Ford, H.R., Hoffman, R.A., Wing, E.J., Magee, D.M., McIntyre, L.A., and Simmons, R.L., 1990, Tumor necrosis factor, macrophage colony-stimulating factor, and interleukin 1 production within sponge matrix allografts, Transplantation, 50:460–466.

    Article  PubMed  CAS  Google Scholar 

  • Gimbrone, M.A. Jr., Cotran, R.S., Leapman, S.B., and Folkman, J., 1974, Growth and neovascularisation: an experimental model using the rabbit cornea, J. Natl. Cancer Inst., 52:413–427.

    PubMed  Google Scholar 

  • Greenblatt, M., and Shubik, P., 1968, Tumor angiogenesis; transfilter diffusion studies in the hamster by the transparent chamber technique, J. Natl. Cancer Inst., 41:111–124.

    PubMed  CAS  Google Scholar 

  • Haegerstrand, A., Dalsgaard, C.-J., Jonzon, B., Larsson, O. and Nilsson, J., 1990, Calcitonin gene-related peptide stimulates proliferation of human endothelial cells, Proc. Natl. Acad. Sci. USA, 87:3299–3303.

    Article  PubMed  CAS  Google Scholar 

  • Haynes, W.L., Proia, A.D. and Klintworth, G.K., 1989, Effect of inhibitors of arachidonic acid metabolism on corneal neovascularization in the rat, Invest. Ophthalmol. Vis.Sci., 30:1588–1593.

    PubMed  CAS  Google Scholar 

  • Hiley, C.R., Yates, M.S., Roberts, P.J., and Bloom, A.E., 1980, Alterations in liver blood flow during glycerol-induced acute renal failure in the rat, Nephron, 26:244–248.

    Article  PubMed  CAS  Google Scholar 

  • Hu, D.E., and Fan, T.-P.D., 1991, Synergistic interaction between bradykinin and interleukin 1 in angiogenesis, Br. J. Pharmacol., 104:83P.

    Google Scholar 

  • Ingber, D., Fujita, T., Kishimoto, S., Sudo, K., Kanamaru, T., Brem, H., and Folkman, J., 1990, Synthetic analogues of fumagillin that inhibit angiogenesis and tumor growth, Nature, 348:555–557.

    Article  PubMed  CAS  Google Scholar 

  • Kimball, E.S., and Fisher, M.C., 1988, Potentiation of IL-1-induced BALB/3T3 fibroblast proliferation by neuropeptides, J. Immunol., 141:4203–4208

    PubMed  CAS  Google Scholar 

  • Kurkinen, M., Vaheri, A., Roberts, P.J., and Stenman, S., 1980, Sequential appearance of fibronectin and collagen in experimental granulation tissue, Lab. Invest., 43:47–51.

    PubMed  CAS  Google Scholar 

  • Kusaka, M., Sudo, K., Fujita, T., Marui, S., Itoh, F., Ingber, D., and Folkman, J., 1991, Potent anti-angiogenic action of AGM-1470: comparison to the fumagillin parent, Biochem. Biophys. Res. Comm., 174:1070–1076.

    Article  PubMed  CAS  Google Scholar 

  • Le Noble, F.A.C., Hekking, J.W.N., Van Straaten, H.W.M., Slaaf, D.W. and Struyker Bouclier, H.A.J., 1991, Angiotensin Il stimulates angiogenesis in the chorioallantoic membrane of the chicken embryo, Eur. J. Pharmacol., 195:305–306.

    Article  PubMed  Google Scholar 

  • Leibovich, S.J., Polverini, P.J., Shepard, H.M., Wiseman, D.M., Shively, V., and Nuseir, N., 1987, Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha, Nature, 329:630–632.

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan, V., Hart, I.R., and Lewis, G.P., 1989, Factors influencing blood supply in wound granuloma quantitated by a new in vivo technique, Cancer Res., 49:415–419.

    PubMed  CAS  Google Scholar 

  • Mahadevan, V., Malik, S.T.A., Meager, A., Fiers, W., Lewis, G.P., and Hart, I.R., 1990, Role of tumour necrosis factor in flavone acetic acid induced tumour vasculature shutdown, Cancer Res., 50:5537–5542.

    PubMed  CAS  Google Scholar 

  • Maragoudakis, M.E Sarmonika, M., and Panoustacopoulou, M., 1988, Inhibition of basement membrane biosynthesis prevents angiogenesis, J. Pharmacol. Exp. Ther., 244:729–733

    PubMed  CAS  Google Scholar 

  • McDevitt, D.G., and Nies, A.S., 1976, Simultaneous measurements of cardiac output and its distribution with microspheres in the rat, Cardiovasc. Res., 10:494–498.

    Article  PubMed  CAS  Google Scholar 

  • Motro, B., Itin, A., Sachs, L., Keshet, E., 1990, Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc. Natl. Acad. Sci.. USA, 87:3092–3096.

    Article  PubMed  CAS  Google Scholar 

  • Parnham, M.J., De Leve, L.D., and Saxena, P.R., 1979, Development of enhanced blood flow responses to prostaglandin E1 in carrageenaninduced granulation tissue, Agents and Actions, 9:510–515.

    Article  PubMed  CAS  Google Scholar 

  • Plunkett, M.L., and Hailey, J.A., 1990, An in vivo quantitative angiogenesis model using tumour cells entrapped alginate, Lab. Invest., 62:510–517.

    PubMed  CAS  Google Scholar 

  • Presta, M., Rusnati, M., Statuto, M., Maier, J.A.M., Gualandris, A., Pozzi, A., and Ragnotti, R., 1991, Basic fibroblast growth factor (bFGF) and endothelial cells: receptor interactions, signal transduction, and cellular response. This issue.

    Google Scholar 

  • Richardson, T.C., Humphreys, J.A.H., and Townsend, K.M.S., 1987, Subcutaneous implantation of double velour Dacron into the mouse: infiltration and angiogenesis, Br. J.exp. Path., 68:359–366.

    CAS  Google Scholar 

  • Robertson, N.E., Discafani, C.M., Downs, E.C., Halley, J.A., Sarre, O., Runkle, R.L.Jr., Popper, T.L., and Plunkett, M.L., 1991, A quantitative in vivo mouse model used to assay inhibitors of tumor-induced angiogenesis, Cancer Res., 51:1339–1344.

    PubMed  CAS  Google Scholar 

  • Schreiber, A.B., Winkler, M.E., and Derynck, D., 1986, Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor, Science 232:1250–1253.

    Article  PubMed  CAS  Google Scholar 

  • Smaje, L.H., Noor, N.M., and Clough, G.F., 1988, Changing sensitivity to H1 and H2 receptor agonists in the growing vasculature, in: “Vascular Endotheium in Health and Disease,” Shu Chien, ed., Advances in Experimental Medicine and Biology, Plenum, New York. vol 242, pp 145–150.

    Chapter  Google Scholar 

  • Smither, R.L., and Fan, T.-P.D., 1990, PAF antagonists inhibit angiogenesis in a rat sponge model, Br. J. Pharmacol., 99:87P.

    Article  Google Scholar 

  • Smither, R.L., and Fan, T.-P.D., 1991, Role of arachidonic acid metabolites in a rat sponge model of angiogenesis, Int. J. Radiat. Biol., 60:48.

    Article  Google Scholar 

  • Sprugel, K.H., McPherson, J.M., Clowes, A.W., and Ross, R., 1987, Effects of growth factors in vivo. I. Cell ingrowth into porous subcutaneous chambers, Am. J. Pathol.. 129:601–613.

    PubMed  CAS  Google Scholar 

  • Takagi, Y., Fukase, M., Takata, S., Yoshimi, H., Tokunaga, O., and Fujita, T., 1990, Autocrine effect of endothelin on DNA synthesis in human vascular endothelial cells, Biochem. Biophys. Res. Comm., 168:537–543.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J.A., Anderson, K.D., DiPietro, J.M., Zweibel, J.A., Zametta, M., Anderson, W.F., and Maciag, T., 1988, Site-directed neovessel formation in vivo, Science, 241:1349–1352.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, W.D., and Brown, F.I., 1987, Quantitation of histamine-induced angiogenesis in the chick chorioallantoic membrane: mode of action of histamine is indirect, Int. J. Microcir. Clin. Exp., 6:343–357.

    CAS  Google Scholar 

  • Thorpe, P.E., Wallace, P.M., Knyba, R.E., Watson, G.J., Mahadevan, V.A., Land, H., Yerganian, G., and Brown, P.J., 1991, Selective killing of proliferating endothelial cells by an anti-fibronectin receptor immunotoxin, Int. J. Radial. Biol., 60:24.

    Article  Google Scholar 

  • Vallee, B.L., Riordan, J.F., Lobb, R.R., Higachi, N., Fett, J.W., Crossley, G., Buhler, R., Budzik, G., Breddam, K., Bethune, J.L., and Alderman, E.M., 1985, Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimental investigation and review, Experientia,41:1–15.

    Article  Google Scholar 

  • Wang, D.H., and Prewitt, R.L., 1990, Captopril reduces aortic and microvascular growth in hypertensive and normotensive rats, Hypertension, 15:68–77

    Article  PubMed  CAS  Google Scholar 

  • West, D.C., Hampson, I.N., Arnold, F., and Kumar, S., 1985, Angiogenesisinduced by degradation products of hyaluronic acid, Science, 228:1324–1326.

    Article  PubMed  CAS  Google Scholar 

  • Woll, P.J., and Rozengurt, E., 1989, Neuropeptides as growth regulators. Br. Med. Bull., 45:492–505.

    PubMed  CAS  Google Scholar 

  • Ziche, M., Morbidelli, L., Pacini, M., Geppetti, P., Alessandri, G. and Maggi, C.A., 1990, Substance P stimulates neovascularisation in vivo and proliferation of cultured endothelial cells, Microvasc. Res., 40:264–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fan, TP.D., Hu, DE., Hiley, C.R. (1992). Development and Validation of a Sponge Model for Quantitative Studies on Angiogenesis. In: Maragoudakis, M.E., Gullino, P., Lelkes, P.I. (eds) Angiogenesis in Health and Disease. NATO ASI Series, vol 227. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3358-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3358-0_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6481-8

  • Online ISBN: 978-1-4615-3358-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics