Skip to main content

Vascular Growth in the Intermittently Ischemic Heart: A Study on Growth Factors Expression

  • Chapter
  • 129 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 227))

Abstract

The formation of blood vessels, i.e. angiogenesis, is an important component of various normal and pathological conditions including wound healing, fracture repair and in females during follicle development, ovulation and pregnancy. Under normal physiological conditions, angiogenesis is tightly regulated, whereas during pathological conditions such as tumor growth and retinopathies it seems to be uncontrolled. Various methods including corneal micropocket and chick embryo chorioallantoic membrane assay have been described to study angiogenesis in vivo. New capillaries originated mainly from sprouting of small venulesand localized degradation of basement membrane of the parent venule was followed by movement of endothelial cells towards the angiogenic stimulusl. Angiogenesis involves the orderly migration, proliferation and differentiation of vascular cells2. The mechanism of angiogenesis and endothelial cell growth control, especially with respect to collateralization (collateral vessel development) is an important research area of cardiovascular physiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Folkman and M. Klagsbrun, Angiogenic factors. Science 235:442–447 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. P. A. D’Amore and R. W. Thompson, Mechanism of angiogenesis. Ann. Rev. Physiol. 49:453–464 (1987).

    Article  Google Scholar 

  3. W. H. Burgess and T. Maciag, The heparin binding (Fibroblast growth factor family proteins. Ann. Rev. Biochem. 58:575–606 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. W. Schaper and J. Schaper, Adaptation to and defense against myocardial ischemia. Cardiology 77:367–372. (1990).

    Article  PubMed  CAS  Google Scholar 

  5. W. Schaper, “The Collateral Circulation of the Heart” North Holland Publishing Co., Amsterdam (1971).

    Google Scholar 

  6. S. Pasyk, W. Schaper, J. Schaper, K. Pasyk, G. Miskiewicz, B. Steinseifer, DNA synthesis in coronary collaterals after coronary artery occlusion in concious dog, Am. J. Physiol. 242:H1031–H1037 (1982).

    PubMed  CAS  Google Scholar 

  7. W. Schaper, M. De Brabander, P. Lewi, DNA synthesis and mitosis in coronary collateral vessels of the dog, Circ. Res. 28:671–679 (1971).

    Article  PubMed  CAS  Google Scholar 

  8. W. Schaper, G. Görge, B. Winkler, J. Schaper, The collateral circulation of the heart, Prog. Cardiovasc. Dis. 31:57–77 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. J. Litvak, L. E. Siderides, A. M. Vineberg, The experimental production of coronary artery insufficiency and occlusion, Am. Heart J. 53:505–518 (1957).

    Article  PubMed  CAS  Google Scholar 

  10. M. Mohri, H. Tomoike, M. Noma, T. Inone, K. Hisano, M. Nakamura, Duration of ischemia is vital for for collateral development: Repeated brief coronary artery occlusions in conscious dogs, Circ. Res. 64:287–296 (1988).

    Article  Google Scholar 

  11. F. C. White, D. M. Roth, C. M. Bloor, Coronary collateral reserve during exercise induced ischemia in swine. Basic Res. Cardiol. 84:42–54 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. W. M. Chilian, H. J. Mass, S. E. Williams, S. M. Layne, E. S. Smith, K. W. Scheel, Microvascular occlusions promote coronary collateral growth, Am. J. Physiol, 258:H1103–H111 (1990).

    PubMed  CAS  Google Scholar 

  13. G. Görge, T. Schmidt, B. R. Ito, G. A. Pantely, W. Schaper, Microvascular and collateral adaptation in swine hearts following progressive coronary artery stenosis. Basic Res. Cardiol, 84:524–535 (1989).

    Article  PubMed  Google Scholar 

  14. G. A. Pantely and H. H. Kerr, Failure to reduce infarct size in the rat, Am. J. Cardiol, 47;443 (1981).

    Article  Google Scholar 

  15. F. Ishikawa, K. Miyazono, U. Hellman, H. Drexler, C. Wernstedt, K. Usuki, F. Takaku, W. Risau, C. H. Heldin, Identification of biologic activity and the cloning and expression of platelet-derived endothelial cell growth factor, Nature 338:557–562 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. D. W. Leung, G. Cachianes, W. J. Kuang, D. V. Goeddel, N. Ferrara, Vascular endothelial growth factor is a secreted angiogenic mitogen, science 246:1306–1309 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. M. Klagsbrun, P. A. D’ Amore, Regulators of angiogenesis. Ann. Rev. Physiol. 53:217–239 (1991).

    Article  CAS  Google Scholar 

  18. D. Gospodarowicz, N. Ferrara, L. Schweigerer, G. Neufeld, Structural characterization and biological functions of fibroblast growth factor, Endocrine Reviews 8:95–109 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. W. Risau and H. G. Zerwes HG, Role of growth factors in the formation of blood vessels, Z. Kardiol. 78:9–11 (1989).

    PubMed  Google Scholar 

  20. W. Quinckler, M. Maasberg, S. Bernotat-Danielowski, N. Lüthe, H. S. Sharma, W. Schaper, Isolation of heparin-binding growth factors from bovine, porcine and canine hearts, Eur. J Hiochem, 181:67–73 (1989).

    Google Scholar 

  21. W. Cassells, E. Spier, J. Sasse, M. Klagsbrun, P. Allen, M. Lee, B. Calvo, M. Chiba, L. Haggroth, J. Folkman, S. Epstein, Isolation characterization, and localization of heparin-binding growth factors in the heart, J. Clin. Inv. 85:433–441 (1990).

    Article  Google Scholar 

  22. H. Sasaki, H. Hoshi, Y. M. Hong, T. Suzuki, T. Kato, H. Sasaki, M. Saito, H. Youki, K. Karube, S. Kono, M. Onodera, S. Aoyagi, Purification of acidic fibroblast growth factor from bovine heart and its localization in the cardiac myocytes, J. Biol. Chem, 264:17606–17612 (1989).

    PubMed  CAS  Google Scholar 

  23. W. H. Burgess, T. Mehlman, D. R. Marshak, B. A. Fraser, T. Maciag, Structural evidence that endothelial cell growth factor factor-13 is the precursor of both endothelial cell growth factor a and acidic fibroblast growth factor, Proc. Natl. Acad. Sci. USA 83:7216–7220 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. I. Viodosky, R. Friedman, R. Sullivan, J. Sasse, M. Klagsbrun, Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet derived growth factor like protein which is secreted, J. Cell. Physiol. 131:402–408 (1987).

    Article  Google Scholar 

  25. P. Chomczynski and N. Sachhi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction, Anal. Biochem. 162:156–159 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. K. M. Rosen, E. D. Lamperti, L. Villa-“Komaroff, Optimizing the Northern blot procedure, Biotechniques 8:398–403 (1990).

    PubMed  CAS  Google Scholar 

  27. M. Jaye, R. Howk, W. Burgess, G. A. Ricca, I.-M. Chiu, M. W. Rayera, S. J. O’Brien, W. S. Modi, T. Maciag, W. N. Drohan, Human endothelial cell growth factor: Cloning, nucleotide sequence and chromosome localization, Science 233:541–545 (1986).

    Article  PubMed  CAS  Google Scholar 

  28. F. Esch, N. Uenao, A. Baird, F. Hill, L. Denoroy, N. Ling, D. Gospodarowicz, R. Guillemin, Primary structure of bovine brain acidic fibroblast growth factor (FGF), Biochem. Biophys. Res. Comm. 133:554–562 (1985).

    Article  PubMed  CAS  Google Scholar 

  29. F. S. McCallum and B. E. H. Maden, Human 18S ribosomal RNA sequence infered from DNA sequence. Biochem. J. 232:725–733 (1985).

    PubMed  CAS  Google Scholar 

  30. R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. G. Higuchi, G. T. Horn, K. B. Mullis, H. A. Erlich, Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science 239:487–491 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. M. Schmidt, H. S. Sharma, W. Schaper, Amplification and sequencing of an mRNA encoding acidic fibroblast growth factor from porcine heart, communicated

    Google Scholar 

  32. H. S. Sharma, R. Kandolf, T. Markert, W. Schaper, Localization of endothelial cell growth factor-0 mRNA in the pig heart during collateralization, Circulation 80:II–453 (1989).

    Google Scholar 

  33. H. L. Weiner HL and J. L. Swain, Acidic fibroblast growth factor mRNA is expressed by cardiac myocytes in culture and the protein is localized to the extracellular matrix, Proc. Natl. Acad. Sci. (USA) 86:2683–2687 (1989).

    Article  CAS  Google Scholar 

  34. E. Spier, Z. Yi-Fu, M. Lee, S. Shrivastva, W. Casscells, Fibroblast growth factors are present in adult cardiac myocytes in vivo, Biochem. Biophys. Res. Comm. 157:1336–1340 (1988).

    Article  Google Scholar 

  35. S. Bernotat-Danielowski, R. J. Schott, H. S. Sharma, P. Kremer, W. Schaper, Fibroblast growth factor (FGF), an endothelial mitogen, is localized in cardiomyocytes of the ischemic collateralized pig heart, Circulation 82:III–377 (1990).

    Google Scholar 

  36. M. B. Sporn, A. B. Roberts, L. M. Wakefield, B. Crombrugghe, Some recent advances in the chemistry and the biology of TGF-ßl, J. Cell. Biol. 105:1039–1045 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. A. B. Roberts, M. B. Sporn, R. K. Assoian, J. M. Smith, N. S. Roche, L. M. Wakefield, U. I. Heine, L. A. Liotta, V. Falanga, J. H. Kehrl, A. S. Fauci, TGF-ßl: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. (USA) 83:4167–4171 (1986).

    Article  CAS  Google Scholar 

  38. T. A. Mustoe, G. F. Pierce, A. Thomason, P. Gramates, M. B. Sporn, T. F. Deuel, Accelerated healing of incisional wounds in rats induced by TGF-ß1, Science 237:1333–1335 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. D. A. Lawrence, P. Pircher, P. Jullien, Conversion of a high molecular weight latent beta-TGF from chicken embryo fibroblasts into a low molecular weight active beta-TGF under acidic conditions, Biochem. Biophys. Res. Commun. 133;1026–1034 (1985).

    Article  PubMed  CAS  Google Scholar 

  40. A. B. Roberts, M. A. Anzano, L. C. Lamb, J. M. Smith, M. B. Sporn, New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non neoplastic tissues, Proc. Natl. Acad. Sci. (USA) 78:5339–5343 (1981).

    Article  CAS  Google Scholar 

  41. W. Schaper, H. S. Sharma, W. Quinkler, T. Markert, M. Wünsch, J. Schaper, Molecular biologic concepts of coronary anastomases, J. Am. Coll. Cardiol. 15:513–518 (1990).

    Article  PubMed  CAS  Google Scholar 

  42. R. Derynck and L. Rhee, Sequence of the porcine TGF-01 precursor, Nucleic Acid. Res. 15:3187 (1987).

    Article  PubMed  CAS  Google Scholar 

  43. M. Wünsch, H. S. Sharma, T. Markert, S. BernotatDanielowski, R. J. Schott, P. Kremer, N. Bleese, W. Schaper, In situ localization of transforming growth factor-ß1 in porcine heart: Enhanced expression after chronic coronary artery occlusion, J. Mol. Cell. Cardiol., in press.

    Google Scholar 

  44. P. J. Keck, S. D. Hauser, G. Krivi, K. Sanzo, T. Warren J. Feder, D. T. Connolly, Vascular permeability factor, an endothelial cell mitogen related to PDGF, Science 246:1309–1312 (1989).

    Article  PubMed  CAS  Google Scholar 

  45. E. Tischer, D. Gospodarowicz, R. Mitchell, M. Silva, J. Schilling, K. Lau, T. Crisp, J. C. Fiddes, J. A. Abraham, Vascular endothelial growth factor: A new member of the platelet derived growth factor gene family, Biochem. Biophys. Res. Commun. 165:1198–1206 (1989).

    Article  PubMed  CAS  Google Scholar 

  46. H. S. Sharma, S. Sack, W. Schaper, Vascular endothelial growth factor in the porcine heart: Enhanced expression during ischemia induced collateralization, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, H.S., Wünsch, M., Sack, S., Schaper, W. (1992). Vascular Growth in the Intermittently Ischemic Heart: A Study on Growth Factors Expression. In: Maragoudakis, M.E., Gullino, P., Lelkes, P.I. (eds) Angiogenesis in Health and Disease. NATO ASI Series, vol 227. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3358-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3358-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6481-8

  • Online ISBN: 978-1-4615-3358-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics