Skip to main content

Finite Size Effects in the Deconfinement Transition

  • Chapter
Condensed Matter Theories

Part of the book series: Condensed Matter Theories ((COMT,volume 7))

  • 151 Accesses

Abstract

The concepts of quark confinement and asymptotic freedom inherent in models of strongly interacting matter at the sub-hadronic level have lead to a great deal of interest in the associated deconfinement phase transition, i.e. the transition from a gas of Hadrons to a hot plasma of deconfined quarks and gluons. The possibility of obtaining energy densities which are large enough to cause deconfinement in ultra-relativistic heavy ion collisions has acted as one of the main stimuli to interest in such collisions, from both the experimental and theoretical points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. A. Olive, Nucl. Phys. B190 [FS3] (1981) 483.

    Article  ADS  Google Scholar 

  2. K. A. Olive, Nucl. Phys. B198 (1982) 461.

    Article  MathSciNet  ADS  Google Scholar 

  3. N. J. Davidson, R. M. Quick, H. G. Miller and A. Plastino, Phys. Lett. B, to appear.

    Google Scholar 

  4. A. L. Goodman, J. I. Kapusta and A. Z. Mekjian, Phys. Rev. C30 (1984) 851.

    ADS  Google Scholar 

  5. A. L. Goodman, Phys. Rev. C37 (1988) 2162.

    ADS  Google Scholar 

  6. A. L. Goodman, Phys. Rev. C39 (1989) 2008.

    ADS  Google Scholar 

  7. R. K. Pathria, Statistical Mechanics, Pergamon Press, 1972.

    Google Scholar 

  8. F. Solms and H. G. Miller, Phys. Lett. A, to appear.

    Google Scholar 

  9. L. Turko, Phys. Lett. B104 (1981) 153.

    MathSciNet  ADS  Google Scholar 

  10. K. Redlich and L. Turko, Z. Phys. C5 (1980) 201.

    MathSciNet  ADS  Google Scholar 

  11. R. Hagedorn and K. Redlich, Z. Phys. C27 (1985) 541.

    ADS  Google Scholar 

  12. M. I. Gorenstein, S. I. Lipskikh, V. K. Petrov and G. M. Zinovjev, Phys. Lett. B123 (1983) 437.

    ADS  Google Scholar 

  13. H.-Th. Elze, W. Greiner and J. Rafelski, Phys. Lett. B124 (1983) 515.

    ADS  Google Scholar 

  14. H.-Th. Elze, W. Greiner and J. Rafelski, Z. Phys. C24 (1984) 361.

    ADS  Google Scholar 

  15. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971.

    Google Scholar 

  16. H. W. Barz, B. L. Friman, J. Knoll and H. Schulz, Phys. Rev. D40 (1989) 157.

    ADS  Google Scholar 

  17. R. Tegen, B. J. Cole, N. J. Davidson, R. H. Lemmer, H. G. Miller and R. M. Quick, Nucl. Phys. A, to appear.

    Google Scholar 

  18. S. Weinberg, Phys. Rev. 166 (1968) 1568.

    Article  ADS  Google Scholar 

  19. K. Johnson, Acta Phys. Pol. B6 (1975) 865.

    Google Scholar 

  20. J. I. Kapusta and K. A. Olive, Nucl. Phys. A408 (1983) 478.

    ADS  Google Scholar 

  21. J. D. Walecka, Ann. of Phys. 83 (1974) 491.

    Article  ADS  Google Scholar 

  22. G. E. Brown and A. J. Jackson, The Nucleon-Nucleon Interaction, North- Holland, Amsterdam, 1976.

    Google Scholar 

  23. J. Cleymans, K. Redlich, H. Satz and E. Suhonen, Z. Phys. C33 (1986) 151.

    ADS  Google Scholar 

  24. D. W. von Oertzen, S. Afr. J. Phys. 11 (1988) 82.

    Google Scholar 

  25. M. I. Gorenstein and O. A. Mogilevsky, Z. Phys. C38 (1988) 161.

    ADS  Google Scholar 

  26. J. Engels, J. Fingberg, K. Redlich, H. Satz and M. Weber, Z. Phys. C42 (1989) 341.

    Google Scholar 

  27. D. H. Rischke, M. I. Gorenstein, H. Stöcker and W. Greiner, Phys. Lett. B237 (1990) 153.

    ADS  Google Scholar 

  28. H. Satz, Heavy Ion Physics at Very High Energies, Plenary talk at the ECFA LHC Workshop, Aachen, Germany, 1990.

    Google Scholar 

  29. N.J. Davidson, H. G. Miller, R.M. Quick and J. Cleymans, Phys. Lett. B255 (1991) 105.

    ADS  Google Scholar 

  30. N. J. Davidson, H. G. Miller and D. W. von Oertzen, Phys. Lett. B256 (1991) 554.

    ADS  Google Scholar 

  31. B. M. Waldhauser, D. H. Rischke, J. A. Maruhn, H. Stöcker and W. Greiner, Z. Phys. C43 (1989) 411.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, H.G., Davidson, N.J., Quick, R.M., Plastino, A. (1992). Finite Size Effects in the Deconfinement Transition. In: Proto, A.N., Aliaga, J.L. (eds) Condensed Matter Theories. Condensed Matter Theories, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3352-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3352-8_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6478-8

  • Online ISBN: 978-1-4615-3352-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics