Skip to main content

Quantum Well Engineering for Intersubband Transitions-General Conduction Band Extrema and Valence Valley

  • Chapter
Intersubband Transitions in Quantum Wells

Part of the book series: NATO ASI Series ((NSSB,volume 288))

Abstract

The physics and engineering of intersubband transitions are discussed. For the conduction intersubband transition, the effective mass tensor formulation is used to more generally illustrate the absorption behavior. For Si <110> quantum wells, for example, interconduction subband absorption is shown to be allowed for both s-and p-polarized optical fields, in contrast with the F valley of AlGaAs/GaAs case where only the s-polarization is possible. For intervalence bands, we have used SiGe/Si and δ-doped structures as examples. The hole intersubband infrared absorption in SiGe/Si and δ-doped Si multiple quantum wells is reported. The polarization dependent spectra show good agreement with the intersubband selection rule. In SiGe/Si multiple quantum well structures, the transition between the first two heavy hole subbands are observed. In the case of the δ-doped structures, the resonance absorption and peak energy can be tuned by varying the doping concentration in the δ-doped layer. The experimentally observed transition energy levels are in agreement with the calculated values when self consistency and the many-body effect, the hole-hole exchange interaction, are included. The possible selection rules are discussed.

In the engineering of intersubband transition, it is shown the transition between two bound states with spatially separated wave functions may have as much as a two-orders of magnitude increase in low field Stark shift, while maintaining a similar strong oscillator strength. Using an asymmetric quantum well, the selection rule, △n = odd is lifted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. C. West, and S. J. Eglash. Appl. Phys. Lett., 46, 1156, 1985.

    Article  ADS  Google Scholar 

  2. B. F. Levine, R. J. Malik, J. Walker, K. K. Choi, C. G. Bethea, D. A. Kleinman, and J. M. Vandenberg. Appl. Phys. Lett., 50, 273, 1987.

    Article  ADS  Google Scholar 

  3. R. P. G. Karunasiri, J. S. Park, Y. J. Mii and K. L. Wang. Appl. Phys. Lett., 57, 2585, 1990.

    Article  ADS  Google Scholar 

  4. A. Harwit and J. S. Harris Jr. Appl. Phys. Lett., 50, 685, 1987.

    Article  ADS  Google Scholar 

  5. P. F. Yuh and K. L. Wang. IEEE J. Quantum Electron., QE-25, 1671, 1989.

    Article  ADS  Google Scholar 

  6. P. F. Yuh and K. L. Wang. J. Appl. Phys., 65, 4377, 1989.

    Article  ADS  Google Scholar 

  7. R. P. G. Karunasiri, Y. J. Mii and K. L. Wang. Electron Dev. Lett.,11, 227, 1990.

    Article  ADS  Google Scholar 

  8. F. Stern and W. E Howard. Phys. Rev., 163, 816, 1967.

    Article  ADS  Google Scholar 

  9. D. D. Coon, and R. P. G. Karunasiri. Appl. Phys. Lett., 45, 649, 1984.

    Article  ADS  Google Scholar 

  10. S. Wieder. The Foundation of Quantum Theory. Academic Press, New York, 1973.

    Google Scholar 

  11. R. P. G. Karunasiri and K. L. Wang. Superlattices and Microstructures, 4, 661, 1988.

    Article  ADS  Google Scholar 

  12. C. I. Yang, and D. S. Pan. J. Appl. Phys.,64, 1573, 1988.

    Article  ADS  Google Scholar 

  13. C. I. Yang, D. S. Pan, R. Somoano. J. Appl. Phys., 65, 3253, 1989.

    Article  ADS  Google Scholar 

  14. S. K Chun and K. L. Wang. to be published.

    Google Scholar 

  15. T. Ando. Z. Phys. B, 26, 263, 1977.

    Article  ADS  Google Scholar 

  16. D. McCombe and T. Cole. Surf. Sci.,98, 469, 1980.

    Article  ADS  Google Scholar 

  17. S. M. Nee, U. Claessen, and F. Koch. Phys. Rev. B, 29, 3449, 1984.

    Article  ADS  Google Scholar 

  18. C. H. Lee and K. L. Wang. to be published.

    Google Scholar 

  19. E. O. Kane. J. Phys. Chem. Solids.,1, 82, 1956.

    Article  ADS  Google Scholar 

  20. J. S. Park, R. P. G. Karunasiri, Y. J. Mii and K. L. Wang. Appl. Phys. Lett.,58(10), 1083, 1991.

    Article  ADS  Google Scholar 

  21. S. S. Rhee, R. P. G. Karunasiri, C. H. Chern, J. S. Park and K. L. Wang. J. Vac. Sci. Tech., B7, 327, 1989.

    ADS  Google Scholar 

  22. R. Wessel and M. Altarelli. Phys. Rev. B,40(18), 12457, 1989.

    Article  ADS  Google Scholar 

  23. C. G. Van de Walle and R. Martin. J. Vac Sci. Technol.,B3, 1257, 1985.

    Google Scholar 

  24. G. E. Pikus and G. L. Bir. Soviet Phys. Solid State,1, 1502, 1960.

    MathSciNet  Google Scholar 

  25. N. Schwarz, F. Muller, G. Tempel, F. Koch and Weimann. Semicond. Sci. Technol., 4, 571, 1989.

    Article  ADS  Google Scholar 

  26. G. Tempel, N. Schwarz, F. Muller and F. Koch. Thin Solid Films,184, 171, 1990.

    Article  ADS  Google Scholar 

  27. S. J. Allen, D. C. Tsui, and B. Vinter. Solid State Commun.,20, 425, 1976.

    Article  ADS  Google Scholar 

  28. The comparison made with the threshold of the absorption peak may also be a valid one as the nonparabolicity in the valence band causes the broadening and hence effectively shifting the absorption peak.

    Google Scholar 

  29. P. F. Yuh and K. L. Wang. Phy. Rev. B,38, 13307, 1988.

    Article  ADS  Google Scholar 

  30. Perng fei Yuh and K. L. Wang. Phy. Rev. B,37, 1328, 1988.

    Article  ADS  Google Scholar 

  31. Y. J. Mii, K. L. Wang, R. P. G. Karunasiri, and P. F. Yuh. Appl. Phys. Lett., 56, 1046, 1990.

    Article  ADS  Google Scholar 

  32. A. Seilmeier, H. J. Hubner, G. Abstreiter, G. Weimann and W. Schlapp. Phy. Rev. Lett., 59, 1345, 1987.

    Article  ADS  Google Scholar 

  33. F. H. Julien, J. M. Lourtioz, N. Herschkorn. Appl. Phys. Lett.,53, 116, 1988.

    Article  ADS  Google Scholar 

  34. C. G. Bethea, B. F. Levine, G. Hasnain, J. Walker, and R. J. Malik. J. Appl. Phys. Lett, 2, 963, 1989.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, K.L., Chun, S.K., Karunasiri, R.P.G. (1992). Quantum Well Engineering for Intersubband Transitions-General Conduction Band Extrema and Valence Valley. In: Rosencher, E., Vinter, B., Levine, B. (eds) Intersubband Transitions in Quantum Wells. NATO ASI Series, vol 288. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3346-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3346-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6475-7

  • Online ISBN: 978-1-4615-3346-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics