Skip to main content

Point Spread Function Estimation of Image Intensifier Tubes

  • Chapter
Review of Progress in Quantitative Nondestructive Evaluation

Part of the book series: Advances in Cryogenic Engineering ((RPQN,volume 28))

Abstract

Real-time radiography systems employing an image intensifier tube have poor resolution (2 to 4 Ip/mm) compared to their film-based counterparts (10 to 20Ip/mm). Phosphor bloom, especially in the output conversion phosphor [1], is the principle cause of reduced resolution. Other systems achieve higher resolution but at the expense of additional hardware complexity [2] or use of expensive materials [3]. We are investigating software-based image restoration techniques that can cost-effectively recover resolution from existing image intensifier tube-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. W. Bates, Jr., in Real-Time Radiologic Imaging: Medical and Industrial Applications, edited by D. A. Garrett and D. A. Bracher (American Society for Testing and Materials, Pennsylvania, 1980).

    Google Scholar 

  2. Y. Kume and K. Doi, Medical Physics 15(6), p. 533 (1988).

    Article  Google Scholar 

  3. L. M. Klynn, R. C. Barry, M. D. Barker, C. Bueno, and T. G. Maple, High-Resolution Real-Time Radiography (RTR) System Design (Air Force Wright Aeronautical Laboratories, Ohio, 1987).

    Google Scholar 

  4. C. S. Williams, Introduction to the Optical Transfer Function (Wiley, New York, 1989).

    Google Scholar 

  5. S. E. Reichenbach, S. K. Park, and R. Narayanswamy, Optical Engineering 30(2), p. 170.

    Google Scholar 

  6. I. P. Corba, Image Tubes (H. W. Sams, Indiana, 1985).

    Google Scholar 

  7. J. Glasser, J. Vaillant, and F. Chazallet, Image Processing II.

    Google Scholar 

  8. H. C. Andrews and B. R. Hunt, Digital Image Restoration (Prentice-Hall, New Jersey, 1977).

    Google Scholar 

  9. I. A. Cunningham and A. Fenster, Medical Physics 14(4), p. 533 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doering, E.R., Gray, J., Basart, J.P. (1992). Point Spread Function Estimation of Image Intensifier Tubes. In: Thompson, D.O., Chimenti, D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. Advances in Cryogenic Engineering, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3344-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3344-3_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6474-0

  • Online ISBN: 978-1-4615-3344-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics