Skip to main content

Neurotoxic Metals and Neuronal Signalling Processes

  • Chapter
The Vulnerable Brain and Environmental Risks

Abstract

Many of the metals are recognized neurotoxicants. The circumstances of human exposure to these metals varies. In the case of the chemotherapeutic agent cisplatin, exposure is the deliberate result of this drug’s use in cancer treatment. Exposure to neurotoxic concentrations of the essential element manganese is associated almost exclusively with manganese ore mining and steel mill operations. Although human neurotoxicity resulting from exposure to organic tin compounds has been associated mainly with industrial settings, the increasing use of these compounds (as heat stabilizers for PVC products, catalysts for polyurethane foam and silicone rubber elastomers, biocides, and anthelmintics) increases the risk of the general population to alkyltin exposure. Similarly, exposure to cadmium, which is used for coating and plating, batteries, paint pigments, plastic stabilizers, and metal alloys, is mainly an industrial problem at present, although the amount of cadmium in the general environment is increasing. Methylmercury contamination, largely from the wood-pulp industry, chlorine alkali plants, and the bacterial conversion of other mercury compounds released into the environment, continues to be a significant environmental problem, as illustrated by the bioaccumulation of methylmercury in many different fish populations. Since elemental mercury vapor is a known neurotoxicant, there recently has been some concern, based on anecdotal evidence, that the release of Hg° from amalgam dental fillings may induce neurological illnesses. Aluminum, which is used extensively (cooking utensils, antacids, antiperspirants), has been implicated in Alzheimer’s disease. The use of inorganic lead in a variety of materials, particularly paints, has made this metal prevalent in the general environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, A., Hussain, T., Chandra, S., and Seth, P., 1986, Effects of coexposure of lead and manganese on neurotransmitter uptake and binding in subcellular fractions of rat brain, Biochem. Arch. 2:279–285.

    CAS  Google Scholar 

  • Aldridge, W., 1984, Effects on mitochondria and other enzyme systems, in: Biological Effects of Organolead Compounds (Grandjean, P., and Grandjean, E., eds.), CRC Press, Boca Raton, FL, pp. 137–144.

    Google Scholar 

  • Aldridge, W., and Cremer, J., 1955, The biochemistry of organotin compounds: Diethyldichloride and triethyltin sulphate, Biochem. J. 61:406–418.

    PubMed  CAS  Google Scholar 

  • Aldridge, W., Street, B., and Skilleter, D., 1977, Oxidative phosphorylation: Halid-dependent and halid-independent effects of triorganotin and triorganolead compounds on mitochondria] functions, Biochem. J. 168:353–364.

    PubMed  CAS  Google Scholar 

  • Alfano, D., and Petit, T., 1981, Behavioral effects of postnatal lead exposure: Possible relationship to hippocampal dysfunction, Neural Biol. 32:319–333.

    CAS  Google Scholar 

  • Alkon, D., and Nelson, T., 1990, Specificity of molecular changes in neurons involved in memory storage, FASEB J., 4:15671576.

    Google Scholar 

  • Allen, J., Gage, P., Leaver, D., and Leow, A., 1980, Triethyltin depresses evoked transmitter release at the mouse neuromuscular junction, Chem. Biol. Intl. 32:227–231.

    Google Scholar 

  • Archibald, F., and Tyree, C., 1987, Manganese poisoning and the attack of trivalent manganese upon catecholamines, Arch. Biochem. Biophys. 256:638–650.

    PubMed  CAS  Google Scholar 

  • Audesirk, G., 1985, Effects of lead exposure on the physiology of neurons, Prog. Neurobiol. 24:199–231.

    PubMed  CAS  Google Scholar 

  • Audesirk, G., 1990, Effects of heavy metals on neuronal calcium channels, in: Biological Effects of Heavy Metals, Volume I (Foulkes, E., ed.), CRC Press, Boca Raton, FL, pp. 1–17.

    Google Scholar 

  • Augustine, G., Charlton, M., and Smith, S., 1987, Calcium action in synaptic transmitter release, Annu. Rev. Neurosci. 10:633–693.

    PubMed  CAS  Google Scholar 

  • Averill, D., and Needleman, H., 1980, Neonatal lead exposure retards cortical synaptogenesis in the rat, in: Low Level Lead Exposure: Clinical Implications of Current Research (Needleman, H., ed.), Raven Press, New York, pp. 201–210.

    Google Scholar 

  • Aw, T., Nicotera, P., Manzo, L., and Orrenius, S., 1990, Tributyltin stimulates apoptosis in rat thymocytes, Arch. Biochem.Biophys. 283:46–50.

    PubMed  CAS  Google Scholar 

  • Azar, C., Scavarda, N., Reynolds, C., and Brodeur, G., 1990, Multiple defects of the NGF receptor in human neuroblastomas, Cell Growth Different. 1:421–428.

    CAS  Google Scholar 

  • Babitch, J., 1988, Cadmium neurotoxicity, in: Metal Neurotoxiciry (Bondy, S., and Prasad, K., eds.), CRC Press, Boca Raton, FL, pp. 141–166.

    Google Scholar 

  • Baker, P., and Crawford, A., 1975, A note on the mechanisms by which inhibitors of the sodium pump accelerate spontaneous release of transmitter from motor nerve terminals, J. Physiol. 247:209–226.

    PubMed  CAS  Google Scholar 

  • Baptista, C., Gershon, T., and Macagno, R., 1990, Peripheral organs control central neurogenesis in the leech, Nature 346:855858.

    Google Scholar 

  • Barbeau, A., 1984, Manganese and extrapyramidal disorders, Neurotoxicology 5:13–36.

    PubMed  CAS  Google Scholar 

  • Beani, L., Bianchi, C., and Ledda, F., 1966, The effect of 2,4-dinitrophenol on neuromuscular transmission, Br. J. Pharmacol. 27:299–312.

    CAS  Google Scholar 

  • Berman, I., and Mann, M., 1980, Seizures and transient cortical blindness associated with cis-platinum (II) diamminedichloride (PDD) therapy in a thirty-year-old man, Cancer, 45:764–766.

    PubMed  CAS  Google Scholar 

  • Berridge, M., and Irvine, R., 1989, Inositol phosphates and cell signalling, Nature 341:197–205.

    PubMed  CAS  Google Scholar 

  • Bierkamper, G., Aizenman, E., and Millington, W., 1984, Neuromuscular function and organotin compounds, Neurotoxicology 5:245–265.

    PubMed  CAS  Google Scholar 

  • Bierkamper, G., and Buxton, I., 1990, Neurotoxicology of organotin compounds, in: Biological Effects of Heavy Metals, Volume I (Foulkes, E. ed.), CRC Press, Boca Raton, FL, pp. 97–170.

    Google Scholar 

  • Bierkamper, G., and Valdes, J., 1982, Triethyltin intoxication alters acetylcholine release from rat phrenic nervelemidiaphragm, Neurobehay. Toxicol. Teratol. 4:251–254.

    CAS  Google Scholar 

  • Binah, O., Meiri, U., and Rahamimoff, H., 1987, The effects of HgCl2 and mersalyl on mechanisms regulating intracellular calcium and transmitter release, Eur. J. Pharmacol. 51:453–458.

    Google Scholar 

  • Birks, R., and Cohen, M., 1968, The action of sodium pump inhibitors on neuromuscular transmission, Proc. R. Soc. Land. 170:381–399.

    CAS  Google Scholar 

  • Blaxter, T., and Carlen, P., 1985, Pre-and postsynaptic effects of baclofen in the rat hippocampal slice, Brain Res. 341:195–199.

    PubMed  CAS  Google Scholar 

  • Blisard, K., and Harrington, D., 1989, Cisplatin-induced neurotoxicity with seizures in frogs, Ann. Neurol. 26:336–341.

    PubMed  CAS  Google Scholar 

  • Bondy, S., 1988, The neurotoxicity of organic and inorganic lead, in: Metal Neurotoxiciry (Bondy, S., and Prasad, K., eds.), CRC Press, Boca Raton, FL, pp. 1–17.

    Google Scholar 

  • Bondy, S., Anderson, C., Harrington, M., and Prasad, K., 1979a, Effect of organic and inorganic lead and mercury on neurotransmitter high-affinity transport and release mechanisms, Environ. Res. 19:102–111.

    CAS  Google Scholar 

  • Bondy, S., Harrington, M., Anderson, C., and Prasad, K., 1979b, Effect of low concentrations of an organic lead compound on the transport and release of a putative neurotransmitter, Tox. Lett. 3:35–41.

    CAS  Google Scholar 

  • Bonithon-Kopp, C., Huel, G., Moreau, T., and Wendling, R., 1986, Prenatal exposure to lead and cadmium and psychomotor development of the child at 6 years.Neurobehay. Toxicol. Teratol. 8:307–310.

    CAS  Google Scholar 

  • Bressler, J., and Goldstein, G., 1991, Mechanisms of lead neurotoxicity, Biochem. Pharmacol. 41:479–488.

    PubMed  CAS  Google Scholar 

  • Brown, A., Cavanagh, J., Verschoyle, R., Gysbers, M., Jones, H., and Aldridge, W., 1984, Evolution of the intracellular changes in neurons caused by trimethyltin, Neuropath. Appl. Neurobiol. 10:267–281

    CAS  Google Scholar 

  • Campbell, J., Wooley, D., Vijayan, V., and Overmann, D., 1982, Morphometric effects of postnatal lead exposure on hippocampal development of the 15-day-old rat, Dev. Brain Res. 3:595–612.

    CAS  Google Scholar 

  • Chandler, V., Maler, B., and Yamamoto, K., 1983, DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone response in vivo, Cell 33:489–499.

    PubMed  CAS  Google Scholar 

  • Chang, L., 1986, Neuropathology of trimethyltin: A proposed pathogenesis mechanism, Fundam. Appl. Toxicol. 6:217–232.

    PubMed  CAS  Google Scholar 

  • Chang, L., and Dyer, R., 1984, Trimethyltin induced zinc depletion in rat hippocampus, in: The Neurobiblogy of Zinc: Part B, Deficiency, Toxicology, and Pathology (Frederickson, C., Howell, G., and Kasarskis, E., eds.), Alan R. Liss, New York,pp. 275.

    Google Scholar 

  • Chang, L., Wenger, G., McMillan, D., and Dyer, R., 1983, Species and strain comparison of acute neurotoxic effects of trimethyltin in mice and rats, Neurobehay. Toxicol. Teratol. 5:337–350.

    CAS  Google Scholar 

  • Chao, S., Suzuki, Y., Zysk, J., and Cheung, W., 1984, Activation of calmodulin by various metal cations as a function of ionic radius, Mol. Pharmacol. 26:75–82.

    PubMed  CAS  Google Scholar 

  • Chavez, E., Jay, D., and Bravo, C., 1987, The mechanism of lead-induced mitochondrial Cat+ efflux, J. Bioenerg. Biomembr. 19:285–290.

    PubMed  CAS  Google Scholar 

  • Cherain, M., and Goyer, R., 1989, Cadmium toxicity, Comm. Toxicol. 3:191–206.

    Google Scholar 

  • Clark, D., Nation, J., Bourgeois, A., Hare, M., Baker, D., and Hinderberger, E., 1985, The regional distribution of cadmium in the brains of orally exposed adult rats, Neurotoxicology 6:109–114.

    PubMed  CAS  Google Scholar 

  • Clarkson, T., 1972, The pharmacology of mercury compounds, Annu. Rev. Pharmacol. 12:375–406.

    PubMed  CAS  Google Scholar 

  • Cookman, G., Hemmens, S., Keane, G., King, W., and Regan, C., 1988, Chronic low level lead exposure precociously induces rat glial development in vitro and in vivo, Neurosci. Lett. 86:33–37.

    PubMed  CAS  Google Scholar 

  • Cookman, G., King, W., and Regan, C., 1987, Chronic low-level lead exposure impairs embryonic to adult conversion of the neural cell adhesion molecule, J. Neurochem. 49:399–403.

    PubMed  CAS  Google Scholar 

  • Cory-Slechta, D., and Widzowski, D., 1991, Lead induces functional DI and D2 dopaminergic supersensitivity, Toxicologist 11:114.

    Google Scholar 

  • Costa, L., and Sulaiman, R., 1986, Inhibition of protein synthesis by trimethyltin, Toxicol. Appl. Pharmacol. 86:189–196. Crapper-McLachlan, D., 1986, Cellular mechanisms of aluminium toxicity, Neurobiol. Aging 7:525–528

    Google Scholar 

  • Crapper-McLachlan, D., Lukiw, W., and Kruck, T., 1989, New evidence for an active role of aluminum in Alzheimer’s disease,Can. J. Neurol. Sci. 16:490–497.

    Google Scholar 

  • Creese, I., Prosser, T., and Snyder, S., 1978, Dopamine receptor binding: Specificity, localization and regulation by ions and guanyl nucleotides, Life Sci. 23:495–500.

    PubMed  CAS  Google Scholar 

  • Cremer, J., 1959, Biochemical studies on the toxicity of tetraethyl lead and other organolead compounds, Br. J. Ind. Med. 16:191–199.

    PubMed  CAS  Google Scholar 

  • Cremer, J., 1962, The action of triethyl tin, triethyl lead, ethyl mercury, and other inhibitors on the metabolism of brain and kidney slices in vitro using substrates labeled with 14C, J. Neurochem. 9:289–298.

    PubMed  CAS  Google Scholar 

  • Curran, T., and Morgan, J., 1986, Barium modulates c-fos expression and post-translational modification, Proc. Natl. Acad. Sci., USA 83:8521–8524.

    CAS  Google Scholar 

  • Curran, T., and Morgan, J., 1990, Neurotransmitters, oncogenes, transcription factors, neuropeptides. Paper presented at FIDIA Research Foundation Symposium, St. Louis, MO.

    Google Scholar 

  • Davis, J., Otto, D., Weil, D., and Grant, L., 1990, The comparative developmental neurotoxicity of lead in humans and animals, Neurotoxicol. Teratol. 12:215–229.

    PubMed  CAS  Google Scholar 

  • De Koning, P., Neyt, J., Jennekens, F., and Gispen, W., 1987a, Evaluation of cis-diamminedichloroplatinum(II) (cisplatin) neurotoxicity in rats, Toxicol. Appl. Pharmacol. 89:81–87.

    Google Scholar 

  • De Koning, P., Neyt, J., Jennekens, F., and Gispen, W.H., 1987b, ORG.2766 protects from cisplatin induced neurotoxicity in rats, Exp. Neurol. 97:746–750.

    Google Scholar 

  • Deleers, M., 1985, Cationic atmosphere and cation competition binding at negatively charged membranes: Pathological implications of aluminum, Res. Commun. Chem. Pathol. Pharmacol. 49:277–294.

    PubMed  CAS  Google Scholar 

  • Diamond, M., Miner, J., Yoshinaga, S., and Yamamoto, K., 1990, Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element, Science 249:1266–1272.

    PubMed  CAS  Google Scholar 

  • Dyer, R., Walsh, T., Wonderlin, W., and Bercegeay, M., 1982, The trimethyltin syndrome in rats, Neurobehay. Toxicol. Teratol. 4:127–133.

    CAS  Google Scholar 

  • Eastman, A., 1987, The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes, Pharmacol. Ther. 34:155–166.

    PubMed  CAS  Google Scholar 

  • Ewers, V., and Erbe, R., 1980, Effects of lead, cadmium and mercury on brain adenylate.cyclase, Toxicology 16:227–237.

    PubMed  CAS  Google Scholar 

  • Frantz, B., and O’Halloran, T., 1990, DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR, Biochemistry 29:4747–4751.

    PubMed  CAS  Google Scholar 

  • Fujita, K., Lazarovici, P., and Guroff, G., 1989, Regulation of the differentiation of PC12 pheochromocytoma cells, Environ. Health Perspect. 80:127–142.

    PubMed  CAS  Google Scholar 

  • Gant, D., Eldefrawi, M., and Eldefrawi, A., 1987, Cyclodiene insecticides inhibit GABAA receptor-regulated chloride transport, Toxicol. Appl. Pharmacol. 88:313–321.

    PubMed  CAS  Google Scholar 

  • Gavin, C., Gunter, K., and Gunter, T., 1990, Manganese and calcium efflux kinetics in brain mitochondria: Relevance to manganese toxicity, Biochem. J. 266:329–334.

    PubMed  CAS  Google Scholar 

  • Gerritsen van der,H.R., Vecht, C. J., van der Burg, M.E.L., Elderson, A., Boogerd, W., Heimans, J. J., Vries, E. P., van Houwelingen, J. C., Jennekens, F. G. I., Gispen, W. H., and Neijt, J. P., 1990, Prevention of cisplatin neurotoxicity with an ACTH (4–9) analogue in patients with ovarian cancer, N. Engl. J. Med. 322:89–94.

    Google Scholar 

  • Gotti, C., Cabrini, D., Sher, E., and Clementi, F., 1987, Effects of long-term in vitro exposure to aluminum, cadmium, or lead on differentiation and cholinergic receptor expression in a human neuroblastoma cell line, Cell Biol. Toxicol. 3:431–440.

    PubMed  CAS  Google Scholar 

  • Habermann, E., Crowell, K., and Janicki, P., 1983, Lead and other metals can substitute for Ca2+ in calmodulin,Arch.Toxicol. 54:61–70.

    PubMed  CAS  Google Scholar 

  • Hammond, P., and Dietrich, P., 1990, Lead exposure in early life: Health consequences, Rev. Environ. Contam. Toxicol. 115:91–124.

    PubMed  CAS  Google Scholar 

  • Hannun, Y., and Bell, R., 1990, Rat brain protein kinase C: Kinetic analysis of substrate dependence, allosteric regulation, and autophosphorylation, J. Biol. Chem. 265:2962–2972.

    PubMed  CAS  Google Scholar 

  • Hare, M., Minnema, D., Cooper, G., and Michaelson, I., 1989, Effects of mercuric chloride on [3H]dopamine release from rat brain striatal synaptosomes, Toxicol. Appl. Pharmacol. 99:266–275.

    PubMed  CAS  Google Scholar 

  • Hare, M., Rezazadeh, S., Cooper, G., Minnema, D., and Michealson, I., 1990, Effects of inorganic mercury on [3H]dopamine release and calcium homeostasis in rat striatal synaptosomes, Toxicol. Appl. Pharmacol. 102:316–330.

    PubMed  CAS  Google Scholar 

  • Hedlund, B., Gamarra, M., and Bartfai, T., 1979, Inhibition of striatal muscarinic receptors in vivo by cadmium, Brain Res.168:216–218.

    PubMed  CAS  Google Scholar 

  • Hooper, C., 1990, Apoptosis: The birth of cell death, J. NIH Res. 2:46–48.

    Google Scholar 

  • Huang, E., Pickett, J., Siegal, J., and Andom, A., 1986, Cations decrease specific [3H]spiroperidol binding in human prefrontal cortex, Life Sci. 38:1369–1373.

    PubMed  CAS  Google Scholar 

  • Jackson, H., and Kitchen, I., 1989, Perinatal lead exposure impairs opioid but not non-opioid stress-induced antinociception in developing rats, Br. J. Pharmacol. 97:1338–1342.

    PubMed  CAS  Google Scholar 

  • Jacobson, K., and Turner, J., 1980, The interaction of cadmium and certain other metal ions with proteins and nucleic acids, Toxicology 16:1–37.

    PubMed  CAS  Google Scholar 

  • Johnson, E., Chang, J., Koike, T., and Martin, D., 1989, Why do neurons die when deprived of trophic factor?, Neurobiol. Aging 10:549–552.

    PubMed  Google Scholar 

  • Johnson, G., and Jope, R., 1987, Aluminum alters cyclic AMP and cyclic GMP levels but not presynaptic cholinergic markers in rat brain in vivo, Brain Res. 413:1–6.

    Google Scholar 

  • Johnson, R., and Shoshani, I., 1990, Kinetics of “P”-site-mediated inhibition of adenylyl cyclase and the requirements for substrate, J. Biol. Chem. 265:11595–11600.

    PubMed  CAS  Google Scholar 

  • Johnson, R., Yeung, S., Stubner, D., Bushfield, M., and Shoshani, I., 1989, Cation and structural requirements for P site-mediated inhibition of adenylate cyclase, Mol. Pharmacol. 35:681–688.

    PubMed  CAS  Google Scholar 

  • Kanaho, Y., Moss, J., and Vaughan, M., 1985, Mechanisms of inhibition of transduction GTPase activity by fluoride and aluminum, J. Biol. Chem. 260:11493–11497.

    PubMed  CAS  Google Scholar 

  • Kapoor, S., and Van Rossum, J., 1986, Effects of Pb2+ added in vitro on Ca2+ movements in isolated mitochondria and slices of rat kidney cortex, Biochem. Pharmacol. 33:1771–1778.

    Google Scholar 

  • Kashani-Sabet, M., Wang, W., and Scanlon, K., 1990, Cyclosporin A suppresses cisplatin-induced cfos expression in ovarian carcinoma cells, J. Biol. Chem. 265:11285–11288.

    PubMed  CAS  Google Scholar 

  • Kater, S., Mattson, M., and Guthrie, P., 1989, Calcium-induced neuronal degeneration: A normal growth cone regulating signal gone awry(?), Ann. N.Y. Acad. Sci. 568:252–261.

    PubMed  CAS  Google Scholar 

  • Kennedy, M., 1989, Do activity-dependent changes in expression of regulatory proteins play a role in the progression of central nervous system neuronal degeneration?, Ann. N.Y. Acad. Sci. 568:193–197.

    PubMed  CAS  Google Scholar 

  • Kinter, W., and Pritchard, J., 1977, Altered permeability of cell membranes, in: Handbook of Physiology (Lee, D., Falk, H., and Murphy, S., eds.), American Physiological Society, Washington, D.C., p. 563.

    Google Scholar 

  • Klein, R., Jing, S., Nanduri, V., O’Rourke, E., and Barbacid, M., 1991, The trk proto-oncogene encodes a receptor for nerve growth factor, Cell 65:189–197.

    PubMed  CAS  Google Scholar 

  • Koenig, M., and Jape, R., 1987, Aluminum inhibits the fast phase of voltage-dependent calcium influx into synaptosomes, J. Neurochem. 49:316–320.

    PubMed  CAS  Google Scholar 

  • Koike, T., Martin, D., and Johnson, E., 1989, Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic factor deprivation: Evidence that [Ca2+]i determines nerve growth factor dependence of sympathetic ganglion cells, Proc. Natl. Acad. Sci. USA 86:6421–6425.

    PubMed  CAS  Google Scholar 

  • Komulainen, H., 1988, Neurotoxicity of methylmercury: Cellular and subcellular aspects, in: Metal Neurotoxicity (Bondy, S. and Prasad, K., eds.), CRC Press, Boca Raton, FL, pp. 167–182.

    Google Scholar 

  • Komulainen, H., and Bondy, S., 1987, Increased free intrasynaptosomal Ca2+ by neurotoxic organometals: Distinctive mechanisms, Toxicol. Appl. Pharmacol. 88:77–86.

    PubMed  CAS  Google Scholar 

  • Komulainen, H., and Tuomisto, J., 1982, Effects of heavy metals on monoamine uptake and release in brain synaptosomes and blood platelets, Neurobehay. Toxicol. Teratol. 4:647–649.

    CAS  Google Scholar 

  • Konji, V., Montag, A., Sandri, G., Nordenbrand, K., and Ernster, L., 1985, Transport of Ca2+ and Mn2+ by mitochondria from rat liver, heart and brain, Biochimie 67:1241–1250.

    PubMed  CAS  Google Scholar 

  • Laurie, R., Cooper, G., and Minnema, D., 1991, Triethyltin: Effects on cholinergic transmission in vitro, Neurotoxicol. Teratol. (unpublished results).

    Google Scholar 

  • Lester, M., Thatcher, R., and Monroe-Lord, L., 1982, Refined carbohydrate intake, hair cadmium levels and cognitive functioning in children, Nutr. Behay. 1:3–13.

    Google Scholar 

  • Levesque, P., and Atchison, W., 1988, Effect of alteration of nerve terminal Ca2+ regulation on increased spontaneous quantal release of acetylcholine by methylmercury, Toxicol. Appl. Pharmacol. 94:55–65.

    PubMed  CAS  Google Scholar 

  • Lock, E., 1979, Toxic action of 2’-chloro-2,4-dinitro-5’,6-di(trifluoromethyl)-diphenylamine in the rat, Chem. Biol. Interact. 28:35–46.

    PubMed  CAS  Google Scholar 

  • Lukiw, W., Kruck, T., and Crapper McLachlan, D., 1987, Alteration in human linker histone-DNA binding in the presence of aluminum salts in vitro and in Alzheimer’s disease, Neurotoxicology 8:291–302.

    PubMed  CAS  Google Scholar 

  • Lynch, G., 1986, Synapses, Circuits, and the Beginnings of Memory, MIT Press, Cambridge, MA.

    Google Scholar 

  • Magour, S., Kristof, V., Baumann, M., and Assmann, G., 1981, Effect of acute treatment of cadmium on ethanol anesthesia, body temperature and synaptosomal Na+ K+ -ATPase of rat brain, Environ. Res. 26:381–391.

    PubMed  CAS  Google Scholar 

  • Manalis, R., and Suszkiw, J., 1988, Effects of heavy metal ions on transmitter release, in: Presynaptic Regulation of Transmitter Release (Feigenbaum, J., and Hanani, M., eds.), Freund Publishing, Tel Aviv.

    Google Scholar 

  • Markovac, J., and Goldstein, G., 1988, Lead activates protein kinase C in immature rat brain microvessels, Toxicol. Appl. Pharmacol. 96:14–23.

    PubMed  CAS  Google Scholar 

  • Markovac, J., and Goldstein, G., 1988, Picomolar concentrations of lead stimulate brain protein kinase C, Nature 334: 71–73.

    PubMed  CAS  Google Scholar 

  • Marlowe, M., Errera, J., and Jacobs, J., 1983, Increased cadmium and lead burdens among mentally retarded children, Am. J. Ment. Defic. 87:477–483.

    PubMed  CAS  Google Scholar 

  • McCauley, P., Bull, R., and Lutkenoff, S., 1979, Association of alterations in energy metabolism with lead-induced delays in rat cerebral cortical development, Neuropharmacology 18:93–101.

    PubMed  CAS  Google Scholar 

  • McCobb, D., and Kater, S., 1988, Membrane voltage and neurotransmitter regulation of neuronal growth motility, Der. Biol. 130:599–609.

    CAS  Google Scholar 

  • McConkey, D., Hartzell, P., Nicotera, P., and Orrenius, S., 1989, Calcium-activated DNA fragmentation kills immature thymocytes, FASEB J. 3:1843–1849.

    PubMed  CAS  Google Scholar 

  • McDowell, J., and Kitchen, I., 1988, Perinatal lead exposure alters the development of 8- but not v-opioid receptors in rat brain, Br. J. Pharmacol. 94:933–937.

    PubMed  CAS  Google Scholar 

  • Melancon, P., Glick, B., Malhotra, V., Weidman, P., Serafini, T., Gleason, M., Orci, L., and Rothman, J., 1987, Involvement of GTP-binding “G” proteins in transport through the Golgi stack, Cell 51:1053–1062.

    PubMed  CAS  Google Scholar 

  • Miller, J., McLachlan, A., and Klug, A., 1985, Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes, EMBO J. 4:1609–1614.

    PubMed  CAS  Google Scholar 

  • Miller, M., 1986, Effects of alcohol on the generation and migration of cerebral cortical neurons, Science 233:1308–1311.

    PubMed  CAS  Google Scholar 

  • Millington, W., and Bierkamper, G., 1982, Chronic triethyltin exposure reduces the resting membrane potential of rat soleus muscle, Neurobehay. Toxicol. Teratol. 4:255–257.

    CAS  Google Scholar 

  • Mills, J., and Johnson, J., 1985, Metal ions as allosteric regulators of calmodulin, J. Biol. Chem. 260:15100–15105.

    Google Scholar 

  • Minnema, D., 1989, Neurochemical alteractions in lead intoxication: An overview, Comm. Toxicol. 3:207–224.

    CAS  Google Scholar 

  • Minnema, D., and Cooper, G., 1990, Assessment of the effects of lead and mercury in vitro on neurotransmitter release, in:Biological Effects of Heavy Metals,Volume I (Foulkes, E. ed.), Boca Raton, FL, pp. 19–57.

    Google Scholar 

  • Minnema, D., Michaelson, I., and Cooper, G., 1988, Calcium efflux and neurotransmitter release from rat hippocampal synaptosomes exposed to lead, Toxicol. Appl. Pharmacol. 92:351–357.

    PubMed  CAS  Google Scholar 

  • Minnema, D., Cooper, G., and Greenland, R., 1989, Effects of methylmercury on neurotransmitter release from rat brain synaptosomes, Toxicol. Appl. Pharmacol. 99:510–521.

    PubMed  CAS  Google Scholar 

  • Minnema, D., Cooper, G., and Schamer, M., 1991, Differential effects of triethyllead on synaptosomal [3H]dopamine vs. [3H]acetylcholine and [3H]gamma-aminobutyric acid release, Neurotoxicol. Teratol. 13:257–265.

    PubMed  CAS  Google Scholar 

  • Moon, C., Marlowe, M., Stellern, J., and Errera, J., 1985, Main and interaction effects of metallic pollutants on cognitive functioning, J. Learn. Disabil. 18:217–221.

    PubMed  CAS  Google Scholar 

  • Moore, K., and Brady, T., 1961, The effect of triethyltin on oxidative phosphorylation and mitochondrial adenosine triphosphate activation, Biochem. Pharmacol. 6:125–133.

    PubMed  CAS  Google Scholar 

  • Moore, M., McIntosh, M., and Bushnell, I., 1986, The neurotoxicology of lead, Neurotoxicology 7:541–556.

    PubMed  CAS  Google Scholar 

  • Nachshen, D., 1984, Selectivity of the Ca binding site in synaptosome Ca channels: Inhibition of Ca influx by mutivalent metal cations, J. Gen. Physiol. 83:941–967.

    PubMed  CAS  Google Scholar 

  • Naranjo, J., Mellstrom, B., Auwerx, J., Mollinedo, F., and Sassone-Corsi, P., 1990, Unusual c-fos induction upon chromaffrn PC12 differentiation by sodium butyrate: Loss of fos autoregulatory function, Nucleic Acids Res. 18:3605–3610.

    PubMed  CAS  Google Scholar 

  • Nathanson, J., and Bloom, F., 1976, Heavy metals and adensonine 3’,5’-monophosphate metabolism: Possible relevance toheavy metal toxicity, Mol. Pharmacol. 12:390–398.

    PubMed  CAS  Google Scholar 

  • Nelson, T., and Alkon, D., 1990, Protein changes underlying long-term facilitation in Aplysia,Bioessays 11:106–108.

    Google Scholar 

  • Neumann, P., and Taketa, F., 1987, Effects of triethyltin bromide on protein phosphorylation in subcellular fractions from rat and rabbit brain, Brain Res. 388:83–87.

    PubMed  CAS  Google Scholar 

  • Nicholls, D., 1986, Intracellular calcium homeostasis, Br. Med. J. 42:353–361.

    CAS  Google Scholar 

  • Olney, J., 1990, Excitotoxic amino acids and neuropsychiatric disorders, Annu. Rev. Pharmacol. Toxicol. 30:47–71.

    PubMed  CAS  Google Scholar 

  • Oortgiesen, M., van Kleef, R., Bajnath, R., and Vijverberg, H., 1990, Nanomolar concentrations of lead selectively block neuronal nicotinic acetylcholine responses in mouse neuroblastoma cells, Toxicol. Appl. Pharmacol. 103:165–174.

    PubMed  CAS  Google Scholar 

  • Oppenheim, R., 1985, Naturally occurring cell death during neural development, Trends Neurosci. 17:487–493.

    Google Scholar 

  • Pan, T., and Coleman, J., 1990, GAL4 transcription factor is not a “zinc finger” but forms a Zn(II)2Cys6 binuclear cluster, Proc. Natl. Acad. Sci. USA 87:2077–2081.

    PubMed  CAS  Google Scholar 

  • Paule, M., Reuhl, K., Chen, J., Ali, S., and Slikker, W., 1986, Developmental toxicology of trimethyltin in the rat, Toxicol. Appl. Pharmacol. 84:412–417.

    PubMed  CAS  Google Scholar 

  • Petit, T., 1989, Issues in aluminum neurotoxicology, Comm. Toxicol. 3:225–238.

    CAS  Google Scholar 

  • Quandt, F., Kato, E., and Narahashi, T., 1982, Effects of methylmercury on electrical responses of neuroblastoma cells, Neurotoxicology 3:205–220.

    PubMed  CAS  Google Scholar 

  • Rajanna, B., Chaptatwala, K., Vaishnav, D., and Desaiah, D., 1981, Changes in ATPase activities in tissues of rats fed on cadmium, J. Environ. Biol. 2:1–9.

    CAS  Google Scholar 

  • Rasmussen, H., Barrett, P., Zawalich, W., Isales, C., Stein, P., Smallwood, J., McCarthy, R., and Bollag, W., 1989, Cycling of Cat+ across the plasma membrane as mechanism for generating a Ca2+ signal for cell activation, Ann. N.Y. Acad. Sci. 568:73–80.

    PubMed  CAS  Google Scholar 

  • Ray, D., 1981, Electroencephalographic and evoked release correlates of trimethyltin induced neuronal damage in the rat hippocampus, J. Appl. Toxicol. 1:145–148.

    PubMed  CAS  Google Scholar 

  • Regan, C., 1989, Lead-imparied neurodevelopment. Mechanisms and threshold values in the rodent, Neurotoxicol. Teratol. 11:533–537.

    PubMed  CAS  Google Scholar 

  • Reichardt, L., and Kelly, R., 1983, A molecular description of nerve terminal function, Ann. Rev. Biochem. 52:871–926.

    PubMed  CAS  Google Scholar 

  • Reuhl, K., and Cranmer, J., 1984, Developmental neuropathology of organotin compounds, Neurotoxicology 5:187–204.

    PubMed  CAS  Google Scholar 

  • Reuhl, K., Smallridge, E., Chang, L., and MacKenzie, B., 1983, Developmental effects of trimethyltin intoxication in theneonatal mouse, I. Light microscopy studies, Neurotoxicology 4:19–28.

    PubMed  CAS  Google Scholar 

  • Ridkin, B., Lazarovini, P., Levi, B., Abe, Y., Fujita, K., and Guroff, G., 1989, Cell cycle-specific action of nerve growth factor in PC12 cells: Differentiation without proliferation, EMBO J. 8:3319–3325.

    Google Scholar 

  • Rimland, B., and Larson, G., 1983, Hair mineral analysis and behavior. An analysis of 51 studies, J. Learn. Disabil. 16:279–285.

    PubMed  CAS  Google Scholar 

  • Roelofs, R., Hrushesky, W., Rogin, J., and Rosenberg, L., 1984, Peripheral sensory neuropathy and cisplatin chemotherapy, Neurology 34:934–938.

    PubMed  CAS  Google Scholar 

  • Rothstein, A., 1973, Mercaptans, the biological target for mercurials, in: Mercury, Mercurials, and Mercaptans (Miller, M. and Clarkson, T., eds.), Charles C. Thomas, Springfield, IL.

    Google Scholar 

  • Rosen, H., and Polakiewicz, R., 1989, Increase in hypothalamic pro-opiomelanocortin gene expression in response to prolonged low level lead exposure, Brain Res. 493:380–384.

    PubMed  CAS  Google Scholar 

  • Rubin, R., 1982, Calcium and Cellular Secretion, Plenum Press, New York.

    Google Scholar 

  • Rutishauser, U., Acheson, A., Hall, A., Mann, D., and Sunshine, J., 1988, The neural cell adhesion molecule (NCAM) as a regulator of cell-cell interactions, Science 240:53–57.

    PubMed  CAS  Google Scholar 

  • Sakai, D., Helms, J., Carlstedt-Duke, J., Gustafsson, J., Rottman, F., and Yamamoto, K., 1988, Hormone-mediated repression of transcription: A negative glucocorticoid response element from the bovine prolactin gene, Genes Dev. 2:1144–1154.

    PubMed  CAS  Google Scholar 

  • Salvaterra, P., Lown, B., Morganti, J., and Massaro, E., 1973, Alterations in neurochemical and behavioral parameters in the mouse induced by low doses of methylmercury, Acta Pharmacol. Toxicol. 33:177–183.

    CAS  Google Scholar 

  • Sarafian, T., Cheung, M., and Verity, M., 1984, In vitro methylmercury inhibition of protein synthesis in neonatal cerebellar perikarya, Neuropathol. Appl. Neurobiol. 10:85–92.

    PubMed  CAS  Google Scholar 

  • Sato, S., Frazier, J., and Goldberg, A., 1984a, Perturbation of a hippocampal zinc-binding pool after postnatal lead exposure in rats, Exp. Neurol. 85:620–630.

    CAS  Google Scholar 

  • Sato, S., Frazier, J., and Goldberg, A., 1984b, A kinetic study of the in vivo incorporation of 65Zn into the rat hippocampus. J. Neurosci. 4:1671–1675.

    CAS  Google Scholar 

  • Schanne, F., Moskal, J., and Gupta, R., 1989, Effect of lead on [Ca2+]i in a presynaptic neural model: ’8F-NMR study of NG108–15 cells, Brain Res. 503:308–311.

    PubMed  CAS  Google Scholar 

  • Scheuhammer, A., and Cherian, M., 1985, Effects of heavy metal cations, sulphydryl reagents and other chemical agents on striatal D2 dopamine receptors, Biochem. Pharmacol. 34:3405–3413.

    PubMed  CAS  Google Scholar 

  • Scott, R., Florine, D., Wille, J., and Yun, K., 1982, Coupling of growth arrest and differentiation at a distinct state in the G, cell cycle, Proc. Natl. Acad. Sci. USA 79:845–849.

    PubMed  CAS  Google Scholar 

  • Seidman, B., and Verity, M., 1987, Selective inhibition of gamma-aminobutyric acid uptake by triethyllead: Role of energy transduction and chloride ions, J. Neurochem. 48:1142–1149.

    PubMed  CAS  Google Scholar 

  • Seidman, B., Olsen, R., and Verity, M., 1987, Triethyllead inhibits gamma-aminobutyric acid binding to uptake sites in synaptosomal membranes, J. Neurochem. 49:415–420.

    PubMed  CAS  Google Scholar 

  • Selwyn, M., Dawson, A., Stockdale, M., and Gains, N., 1970, Chloride-hydroxide exchange across mitochondrial, erythrocyte and artificial lipid membranes mediated by trialkyl-and triphenyltin compounds, Environ. J. Biochem. 14:120–126

    CAS  Google Scholar 

  • Seth, P., and Chandra, S., 1988, Neurotoxic effects of manganese, in: Metal Neurotoxicity (Bondy, S. and Prasad, K., eds.),CRC Press, Boca Raton, FL, pp. 19–33.

    Google Scholar 

  • Seth, P., Hong, J., Kilts, C., and Bondy, S., 1981, Alteration of cerebral neurotransmitter receptor function by exposure of rats to manganese, Toxicol. Lett. 9:247–255.

    PubMed  CAS  Google Scholar 

  • Simons, T., 1986, Cellular interactions between lead and calcium, Br. Med. Bull. 42:431–440.

    PubMed  CAS  Google Scholar 

  • Shao, Z., and Suszkiw, J., 1991, Ca2+-surrogate action of Pb2+ on acetylcholine release from rat brain synaptosomes, J. Neurochem. 56:568–574.

    PubMed  CAS  Google Scholar 

  • Shellenberger, M., 1984, Effects of early lead exposure on neurotransmitter systems in the brain: A review with commentary, Neurotoxicology 5:177–212.

    PubMed  CAS  Google Scholar 

  • Siegel, N., and Haug, A., 1983, Aluminum interaction with calmodulin: Evidence for altered structure and function from optical and enzymatic studies, Biochim. Biophys. Acta 744:36–45.

    PubMed  CAS  Google Scholar 

  • Sloviter, R., and Damiano, B., 1981, On the relationship between kainic acid-induced epileptiform activity and hippocampal neuronal damage, Neuropharmacology 20:1003–1011.

    PubMed  CAS  Google Scholar 

  • Sloviter, R., Von Knebel Doeberitz, C., Walsh, T., and Dempster, D., 1986, On the role of seizure activity in the hippocampal damage produced by trimethyltin, Brain Res. 367:169–182.

    PubMed  CAS  Google Scholar 

  • Smith, M., Ambudkar, I., Phelps, P., Regec, A., and Trump, B., 1987, HgC12-induced changes in [Ca2+]i of cultured rabbit renal tubular cells, Biochim. Biophys. Acta 931:130–142.

    PubMed  CAS  Google Scholar 

  • Smith, R., 1972, Dose-response relationship associated with known mercury absorption at low dose levels of inorganic mercury, in: Environmental Mercury Contamination (Hartung, R., and Dinman, B., eds.), Ann Arbor Science Publishers, Ann Arbor, MI, pp. 207–222.

    Google Scholar 

  • Snelling, R., and Nicholls, D., 1985, Calcium efflux and cycling across the synaptosomal plasma membrane, Biochem. J. 226:225–231.

    PubMed  CAS  Google Scholar 

  • Snyder, S., and Narahashi, T., 1990, Receptor-channel alterations in disease: Many clues, few causes, FASEB J. 4:2707–2708.

    PubMed  CAS  Google Scholar 

  • Speizer, L., Watson, M., Kanter, J., and Brunton, L., 1989, Inhibition of phorbol ester binding and protein kinase C activity by heavy metals, J. Biol. Chem. 264:5581–5585.

    PubMed  CAS  Google Scholar 

  • Sorenson, C., Barry, M., and Eastman, A., 1990, Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin, J. Natl. Cancer Inst. 82:749–755.

    PubMed  CAS  Google Scholar 

  • Sturman, J., and Wisniewski, H., 1988, Aluminum, in: Metal Neurotoxicity (Bondy, S., and Prasad, K., eds.), CRC Press, Boca Raton, FL, pp. 61–85.

    Google Scholar 

  • Suhayda, C., and Haug, A., 1984, Organic acids prevent aluminum-induced conformational changes in calmodulin, Biochem. Biophys. Res. Commun. 119:376–381.

    PubMed  CAS  Google Scholar 

  • Suszkiw, J., Toth, G., Murawsky, M., and Cooper, G., 1984, Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+movements in synaptosomes and subcellular fractions from rat brain and Tordedo electric organ, Brain Res. 323:31–46.

    PubMed  CAS  Google Scholar 

  • Sweadner, K., 1985, Ouabain-evoked norepinephrine release from intact rat sympathetic neurons: Evidence for carrier-mediated release, J. Neurosci. 5:2397–2406.

    PubMed  CAS  Google Scholar 

  • Terheggen, P., Van der Hoot, R., Root, B., and Gispen, W., 1989, Cellular distribution of cis diamminedichloroplatinum(II)DNA binding in rat dorsal root spinal ganglia: Effect of the neuroprotecting peptide ORG.2766, Toxicol. Appl. Pharmacol. 99:334–43.

    PubMed  CAS  Google Scholar 

  • Thomas, L., Hartung, K., Langosch, D., Rehm, H., Bamberg, E., Franke, W., and Betz, H., 1988, Identification of synaptophysin as a hexameric channel protein of the synaptic vesicle membrane, Science 242:1050–1053.

    PubMed  CAS  Google Scholar 

  • Thompson, T., Sheng, M., and Greenberg, M., 1990, Neurotransmitter regulation of c-fos proto-oncogene transcription, Paper presented at FIDIA Research Foundation Symposium, St. Louis, MO.

    Google Scholar 

  • Tilson, H., Mactutus, C., McLamb, R., and Bume, T., 1982, Characterization of triethyllead chloride neurotoxicity in adult rats, Neurobehay. Toxicol. Teratol. 4:671–681.

    CAS  Google Scholar 

  • Tomiwa, K., Nolan, C., and Cavanagh, J., 1986, The effects of cisplatin on rat spinal ganglia: A study by light and electron microscopy and by morphometry, Acta Neuropathol. 69:295–308.

    PubMed  CAS  Google Scholar 

  • Usdin, T., Creese, I., and Snyder, S., 1980, Regulation by cations of [3H]spiroperidol binding associated with dopamine receptors of rat brain, J. Neurochem. 34:669–676.

    PubMed  CAS  Google Scholar 

  • Vallee, B., Coleman, J., and Auld, D., 1991, Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains, Proc. Natl. Acad. Sci. USA 88:999–1003.

    PubMed  CAS  Google Scholar 

  • Valdes, J., Mactutus, C., Santos-Anderson, R., Dawson, R., and Annau, Z., 1983, Selective neurochemical and histological lesions in rat hippocampus following chronic trimethyltin exposure, Neurobehay. Toxicol. Teratol. 5:357–361.

    CAS  Google Scholar 

  • Van der Hoot, R., Vecht, C., Van der Burg, M., Elderson, A., Boogerd, W., Heimans, J., Vries, E., Van Houwelingen, J., Jennekens, F., Gispen, W., et al., 1990, Prevention of cisplatin neurotoxicity with an ACTH(4–9) analogue in patients with ovarian cancer, N. Engl. J. Med. 322:89–94.

    Google Scholar 

  • Verity, M., Brown, W., and Cheung, M., 1975, Organic mercurial encephalopathy: In vivo and in vitro effects of methylmercury on synaptosomal respiration, J. Neurochem. 25:759–767.

    PubMed  CAS  Google Scholar 

  • Vogel, D., Margolis, R., and Mottet, N., 1985, The effects of methylmercury binding to microtubules, Toxicol. Appl. Pharmacol. 80:473–486.

    PubMed  CAS  Google Scholar 

  • Walsh, T., and DeHaven, D., 1988, Neurotoxicity of the alkyltins, in: Metal Neurotoxicity (Bondy, S., and Prasad, K., eds.), CRC Press, Boca Raton, FL, pp. 87–107.

    Google Scholar 

  • Walum, E., 1982, Membrane lesions in cultured mouse neuroblastoma cells exposed to metal compounds, Toxicology 25:67–74.

    PubMed  CAS  Google Scholar 

  • Webb, M., 1979, Interactions of cadmium with cellular components, in: The Chemistry, Biochemistry and Biology of Cadmium (Webb, M., ed.), Elsevier/North Holland, New York, pp. 285–340.

    Google Scholar 

  • Winder, C., and Kitchen, I., 1984, Lead neurotoxicity: A review of the biochemical, neurochemical and drug-induced behavioural evidence, Prog. Neurobiol. 22:59–87.

    PubMed  CAS  Google Scholar 

  • Wolters, E., Huang, C., Clark, C., Peppard, R., Okada, J., Chu, N., Adam, M., Ruth, T., Li, D., and Caine, D., 1989, Positron emission tomography in manganese intoxication, Ann. Neurol. 26:647–651.

    PubMed  CAS  Google Scholar 

  • Yanker, B., and Shooter, E., 1979, Nerve growth factor in the nucleus: Interactions with receptors on the nuclear membrane, Proc. Natl. Acad. Sci. USA 76:1269–1273.

    Google Scholar 

  • Yonaha, M., Saito, M., and Sagai, M., 1983, Stimulation of lipid peroxidation by methylmercury in rats, Life Sci. 32:1507–1514.

    PubMed  CAS  Google Scholar 

  • Zucker, R., 1989, Short-term synaptic plasticity, Ann. Rev. Neurosci. 12:13–31.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Minnema, D. (1992). Neurotoxic Metals and Neuronal Signalling Processes. In: Isaacson, R.L., Jensen, K.F. (eds) The Vulnerable Brain and Environmental Risks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3330-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3330-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6467-2

  • Online ISBN: 978-1-4615-3330-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics