Skip to main content

Formation of Excess Reactive Oxygen Species within the Brain

  • Chapter
The Vulnerable Brain and Environmental Risks

Abstract

The terms free radicals or oxygen radicals have become commonly used in the past decade as a result of overwhelming data suggesting that oxygen radicals are involved in a variety of disease processes. The works of Freeman and Crapo (1982) and Halliwell and Gutteridge (1985, 1989) especially have addressed the ubiquitous role of free radicals in the biology of disease and tissue injury. Most of the issues considered to date have dealt with the role of free radicals in the mechanisms of carcinogenesis, ischemia, and aging. In the field of toxicology, free-radical research has primarily focused in the area of pulmonary, cardiac, and hepatic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, F.F., Cowan, D.L., and Sun, A.Y., 1987, Detection of free radical formation various tissues after acute carbon tetrachloride administration in the gerbil, Life Sci. 41:2469–2475.

    PubMed  CAS  Google Scholar 

  • Ali, S.F., and Bondy, S.C., 1989, Triethyl lead-induced damage in various regions of the rat brain, J. Toxicol. Environ. Health 26:235–242.

    PubMed  CAS  Google Scholar 

  • Ando, A., Inoue, M., Hirota, M., Morino, Y., and Arakai, S., 1989, Effect of a superoxide dismutase derivative on cold-induced brain edema, Brain Res. 477:286–291.

    PubMed  CAS  Google Scholar 

  • Armstead, W.M., Mirro, R., Leffler, C.W., and Busija, D.W., 1989, Cerebral superoxide anion generation during seizures in newborn pigs, J. Cereb. Blood Flow Metab. 9:175–179.

    PubMed  CAS  Google Scholar 

  • Asano, T., Koide, T., Gotch, O., Joshita, H., Hanamura, T., Shigeno, T., and Tokakura, K., 1989, The role of free radicals and eicosanoids in the pathogenic mechanism underlying ischemic brain edema, Mol. Chem. Neuropathol. 10:101–133.

    PubMed  CAS  Google Scholar 

  • Au, A.M., Chan, P.H., and Fishman, R.A., 1985, Stimulation of phospholipase A2 activity by oxygen-derived free radicals in isolated brain capillaries, J. Cell Biochem. 27:449–459.

    PubMed  CAS  Google Scholar 

  • Aust, S.D., Morehouse, L.A., and Thomas, C.E., 1985, Role of metals in oxygen radical reactions, J. Free Rad. Biol. Med. 1:3–25.

    CAS  Google Scholar 

  • Banik, N.L., Hogan, E.L., and Hsu, C.Y., 1987, The multimolecular cascade of spinal cord injury, Neurochem. Pathol. 7:57–77.

    PubMed  CAS  Google Scholar 

  • Blackwell, G.J., Carnuccio, R., Di Rosa, M., Flower, R.J., Parente, L., and Perisco, P., 1980, Macrocortin: A polypeptide causing the antiphospholipase effect of glucocorticoids, Nature 287:147–149.

    PubMed  CAS  Google Scholar 

  • Bondy, S.C., 1986, The biochemical evaluation of neurotoxic damage, Fundam. Appl. Toxicol. 6:208–216.

    PubMed  CAS  Google Scholar 

  • Bondy, S.C., 1990, Intracellular calcium and neurotoxic events, Neurotoxicol. Teratol. 11:527–531.

    Google Scholar 

  • Bondy, S.C., and McKee, M., 1990, Prevention of chemically induced synaptosomal changes, J. Neurosci. Res. 25:229–235.

    PubMed  CAS  Google Scholar 

  • Bondy, S.C., McKee, M., and LeBel, C.P., 1991, Changes in synaptosomal pH and rates of oxygen radical formation induced by chlordecone, Molec. Chem. Neuropathol. 13:95–106.

    Google Scholar 

  • Bonser, R.W., Thompson, N.T., Randall, R.W., and Garland, L.G., 1989, Phospholipase D activation is functionally linked to superoxide generation in the human neutrophil, Biochem. J. 264:617–620.

    PubMed  CAS  Google Scholar 

  • Bose, R., Sutherland, G.R., and Pinsky, C., 1990, Excitotoxins and free radicals: Accomplices in post-ischemic and other neurodegeneration, Eur. J. Pharmacol. 183:1170–1I7I.

    Google Scholar 

  • Boveris, A., and Chance, B., 1973, The mitochondrial generation of hydrogen peroxide: General properties and the effect of hyperbaric oxygen, Biochem. J. 134:707–716.

    PubMed  CAS  Google Scholar 

  • Braughler, J.M., and Hall, E.D., 1989, Central nervous system trauma and stroke. I. Biochemical and considerations for oxygen radical formation and lipid peroxidation, Free Rad. Biol. Med. 6:289–301.

    PubMed  CAS  Google Scholar 

  • Bruckdorfer, K.R., Jacobs, M., and Rice-Evans, C., 1990, Endothelium-derived relaxing factor (nitric oxide), lipoprotein oxidation, and atherosclerosis, Biochem. Soc. Trans. 18:1061–1063.

    PubMed  CAS  Google Scholar 

  • Burton, G.W., and Ingolo, K.V., 1984, β carotene: An unusual type of lipid antioxidant, Science 224:569–573.

    PubMed  CAS  Google Scholar 

  • Busto, R., Yoshida, S., Ginsheng, M.D., Alonso, O., Smith, D.W., and Goldberg, W.J., 1984, Regional blood flow in compression-induced edema in rats: Effects of dietary vitamin E, Ann. Neural. 15:441–448.

    CAS  Google Scholar 

  • Byczowski, J.Z., and Gessner, T., 1988, Biological role of the superoxide radical, Int. J. Biochem. 20:569–580.

    Google Scholar 

  • Cadet, J.L., 1990, Chronic treatment with prolixin causes oxidative stress in rat brain, Biol. Psychiat. 28:738–740.

    PubMed  CAS  Google Scholar 

  • Calvin, H.I., Medvedovsky, C., and Worgul, B., 1986, Near-total glutathione depletion and age-specific cataracts induced by buthionine sulfoximine in mice, Science 233:553–555.

    PubMed  CAS  Google Scholar 

  • Cao, W., Carney, J.M., Duchon, A., Floyd, R.A., and Chevion, M., 1988, Oxygen free radical involvement in ischemia and superfusion injury to brain, Neurosci. Lett. 88:233–238.

    PubMed  CAS  Google Scholar 

  • Chan, P.K., 1988, in: Cellular Antioxidant Defense Mechanisms, Vol. III (C.K. Chow, ed.), CRC Press, Boca Raton, FL, pp. 89–109.

    Google Scholar 

  • Chang, L.W., Gilbert, M., and Sprecher, J., 1978, Modification of methylmercury neurotoxicity by vitamin E, Environ. Res. 17:356–366.

    PubMed  CAS  Google Scholar 

  • Choi, D.W., 1990, Cerebral hypoxia: New approaches and unanswered questions, J. Neurosci. 10:2493–2501.

    PubMed  CAS  Google Scholar 

  • Cino, M., and Del Maestro, R.F., 1989, Generation of hydrogen peroxide by brain mitochondria: The effect of reoxygenation following postdecapatative ischemia, Arch. Biochem. Biophys. 269:623–638.

    PubMed  CAS  Google Scholar 

  • Clement, M., and Bourre, J.M., 1990, Alteration of a-tocopherol content in the developing and aging peripheral nervous system: Persistence of high correlations with total and specific (n-6) polyunsaturated fatty acids, J. Neurochem. 54:21102117.

    Google Scholar 

  • Cohen, G., 1988, Oxygen radicals and Parkinson’s disease, in: Oxygen Radicals and Tissue Injury (B. Halliwell, ed.), Clarendon Press, Oxford, pp. 130–135.

    Google Scholar 

  • Cojocel, C., Beuter, W., Muller, W., and Mayer, D., 1989, Lipid peroxidation: A possible mechanism of trichloroethylene nephrotoxicity, Toxicology 55:131–141.

    PubMed  CAS  Google Scholar 

  • Daniell, L.C., Brass, E.P., and Harris, R.A., 1988, Effect of ethanol on intracellular ionized calcium concentrations in synaptosomes and hepatocytes, Mol. Pharmacol. 32:831–837.

    Google Scholar 

  • De Vito, M.J., and Wagner, G.C., 1989, Metamphetamine induced neuronal damage: A possible role for free radicals, Neuropharmacology 28:1145–1150.

    PubMed  Google Scholar 

  • Devasagayam, T.P.A., 1989, Decreased peroxidative potential in rat brain microsomal fractions during aging, Neurosci. Lett. 103:92–96.

    PubMed  CAS  Google Scholar 

  • Dexter, D.T., Carayon, A., Vidarlhet, M., Ruberg, M., Agid, F., Agid, Y., Lees, A.J., Wells, F.R., Jenner, P., and Marsden, C.D., 1990, Decreased ferritin levels in brain in Parkinson’s disease, J. Neurochem. 55:16–20.

    PubMed  CAS  Google Scholar 

  • Dildy, J.E., and Leslie, S.W., 1989, Ethanol inhibits NMDA-induced increase of free intracellular Ca2+ in dissociated brain cells, Brain Res. 499:383–387.

    PubMed  CAS  Google Scholar 

  • Donaldson, J., Labella, F.S., and Gessa, D., 1981, Enhanced autooxidation of dopamine as a possible basis of manganese neurotoxicity, Neurotoxicology 2:53–64.

    PubMed  CAS  Google Scholar 

  • Dreosti, I.E., 1987, Micronutrients, superoxide and the fetus, Neurotoxicology 8:445–450.

    PubMed  CAS  Google Scholar 

  • Dun, E., Ismail, M., Szerdahelyi, P., Joo, F., Dun, L., Koltai, M., and Draskoczy, M., 1990, Dexamethasone treatment attenuates the development of ischemic brain edema in gerbils, Neuroscience 34:203–207.

    Google Scholar 

  • Dykens, J.A., Stern, A., and Trenkner, E., 1987, Mechanism of kainate toxicity to cerebellar neurons in vitro is analogous to reperfusion tissue injury, J. Neurochem. 49:1222–1228.

    PubMed  CAS  Google Scholar 

  • Essman, W.B., and Wollman, S.B., 1989, Free radicals, central nervous system processes and brain functions, in: Oxygen Radicals: Systemic Events and Disease Processes (D.K. Das and W.B. Essman, eds.), Karger, Basel, pp. 172–191.

    Google Scholar 

  • Fedtke, N., and Bolt, H.M., 1986. Detection of 2,5 hexanedione in the urine of persons not exposed to n-hexane, Int. Arch. Occup. Health 57:143–148.

    CAS  Google Scholar 

  • Floyd, R.A., 1990, Role of oxygen free radicals in carcinogenesis and brain ischemia, FASEB J. 4:2587–2597.

    PubMed  CAS  Google Scholar 

  • Freeman, B., and Crapo, J.D., 1982, Biology of disease: Free radicals and tissue injury, Lab. Invest. 47:412–426.

    PubMed  CAS  Google Scholar 

  • Fridovich, I., 1989, Oxygen radicals from acetaldehyde, Free Rad. Biol. Med. 7:557–558.

    PubMed  CAS  Google Scholar 

  • Ghersi-Egea, J.F., Mim, A., and Siest, G., 1988, A new aspect of the protective functions of the blood-brain barrier: Activities of four drug metabolizing enzymes in isolated rat brain microvessels, Life Sci. 42:2515–2523.

    PubMed  CAS  Google Scholar 

  • Graham, W.C., Robertson, R.G., Sambrook, M.A., and Crossman, A.R., 1990, Injection of excitatory amino acid antagonists into the medial pallidal segment of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated primate, reverses motor symptoms of Parkinsonism, Life Sci. 47:PL91–PL97.

    PubMed  CAS  Google Scholar 

  • Gutteridge, J.M., Westermarck, T., and Santavvori, P., 1983, Iron and oxygen radicals in tissue damage: Implications for neuronal ceroid lipofuchsinoses, Acta. Neurol. Scand. 68:365–370.

    PubMed  CAS  Google Scholar 

  • Hadjiconstantinou, M., Mariani, A.P., and Neff, N.H., 1989, GM1 ganglioside-induced recovery of nigrostriatal dopaminergic neurons after MPTP: An immunohistochemical study, Brain Res. 484:297–303.

    PubMed  CAS  Google Scholar 

  • Hall, E.D., and Braughler, J.M., 1989, Central nervous system trauma and stroke. II Physiological and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation, Free Rad. Biol. Med. 6:303–313.

    PubMed  CAS  Google Scholar 

  • Hall, E.D., Yonkey, P.A., McCall, J.M., and Braughler, J.M., 1988, Effects of the 21-aminosteroid V74006F on experimental head injuries in mice, J. Neurosurg. 68:462–465.

    Google Scholar 

  • Halliwell, B., 1988, Albumin—an important extracellular antioxidant?, Biochem. Pharmacol. 37:569–571.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., 1989a, Protection against tissue damage in vivo by desferrioxamine: What is its mechanism of action?, Free Rad. Biol. Med. 7:645–651.

    CAS  Google Scholar 

  • Halliwell, B., 1989b, Oxidants and the central nervous system: Some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disease, traumatic injury or stroke?, Acta. Neurol. Scand. 126:23–33.

    CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C., 1984, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J. 219:1–14.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C., 1985, Oxygen radicals and the nervous system. Trends Neurosci. 8:22–26.

    CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C., 1986, Oxygen free radicals and iron in relation to biology and medicine: Some problems and concepts, Arch. Biochem. Biophys. 246:501–514.

    PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J.M.C., 1989, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, p. 266.

    Google Scholar 

  • Hanig, J.P., Yoder, P.D., and Krop, S., 1984, Protection with butylated hydroxytoluene and other compounds against intoxication and mortality caused by hexachlorophene, Food Chem. Toxic. 22:185–189.

    CAS  Google Scholar 

  • Hanstein, W.G., 1976, Uncoupling of oxidative phosphorylation, Biochem. Biophys. Acta. 456:129–148.

    PubMed  CAS  Google Scholar 

  • Hasan, M., and Ali, S.F., 1981, Effects of thallium, nickel and cobalt administration on the lipid peroxidation in different regions of the rat brain, Toxicol. Appl. Pharmacol. 57:8–13.

    PubMed  CAS  Google Scholar 

  • Heikkila, R.E., Sieber, B.A., Mansino, L., and Sonsalla, P.K., 1989, Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse, Molec. Chem. Neuropathol. 10:171–183.

    CAS  Google Scholar 

  • Ikeda, Y., Ikeda, K., and Long, D.M., 1989, Protective effect of the iron chelator deferoxamine on cold-induced brain edema, J. Neurosurg. 71:233–238.

    PubMed  CAS  Google Scholar 

  • Jackson, G.R., Apffel, L., Werrbach-Perez, K., and Perez-Polo, J.R., 1990, Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I Stimulation of hydrogen peroxide resistance, J. Neurosci. Res. 25:360–368.

    PubMed  CAS  Google Scholar 

  • Johnson, J.D., Conroy, W.G., Buxis, K.D., and Isom, G.E., 1987, Peroxidation of brain lipids following cyanide intoxication in mice, Toxicology 46:21–28.

    PubMed  CAS  Google Scholar 

  • Kaneko, M., Panagia, V., Paolillo, G., Majumder, S., Ou, C., and Challa, N.S., 1990, Inhibition of cardiac phosphatidylethanolamine N-methylation by oxygen free radicals, Biochem. Biophys. Acta 1021:33–38.

    PubMed  CAS  Google Scholar 

  • Kehrer, J.P., Mossman, B.T., Sevanian, A., Trush, M.A., and Smith, M.T., 1988, Free radical mechanisms in chemical pathogenesis, Toxicol. Appl. Pharmacol. 95:349–362.

    PubMed  CAS  Google Scholar 

  • Kehrer, J.P., Jones, D.P., LeMasters, J.J., Farber, J.L., and Jaeschke, H., 1990, Mechanisms of hypoxic cell injury, Toxicol. Appl. Pharmacol. 106:165–178.

    PubMed  CAS  Google Scholar 

  • Kitagawa, K., Matsumoto, M., Oda, T., Nunobe, M., Hoto, R., Handa, N., Fukunaga, R., Isaka, Y., Kimura, K., Maeda, H., Mikoshiba, K., and Kamado, T., 1990, Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death, Neurosciences 35:551–558.

    CAS  Google Scholar 

  • Komulainen, H., and Bondy, S.C., 1987, Increased free intrasynaptosomal Ca2+ by neurotoxic organometals: Distinctive mechanisms, Toxicol. Appl. Pharmacol. 88:77–86.

    PubMed  CAS  Google Scholar 

  • Kontos, H.A, 1989, Oxygen radicals in CNS damage, Chem.-Biol. Interact. 72:229–255.

    PubMed  CAS  Google Scholar 

  • Kontos, H.A., and Povlishock, J.T., 1986, Oxygen radicals in brain injury, CNS Trauma 3:257–302.

    CAS  Google Scholar 

  • LeBel, C.P., and Bondy, S.C., 1990, Sensitive and rapid quantitation of oxygen reactive species in rat synaptosomes, Neurochem. Ira. 17:435–440.

    CAS  Google Scholar 

  • LeBel, C.P., and Bondy, S.C., 1991, Persistent protein damage despite reduced oxygen radical formation in the aging rat brain, Int. J. Dev. Neurosci. 9:139–146.

    PubMed  CAS  Google Scholar 

  • LeBel, C.P., and Schatz, R.A., 1990, Altered synaptosomal phospholipid metabolism after toluene: Possible relationship with membrane fluidity, Na+, K+-adenosine triphosphatase and phospholipid methylation, J. Pharmacol. Exp. Therap. 253:1189–1197.

    CAS  Google Scholar 

  • LeBel, C.P., Ali, S.F., McKee, and Bondy, S.C., 1990, Organometal-induced increases in oxygen radical activity: The potential of 2’,7’-dichlorofluorescin diacetate as an index of neurotoxic damage, Toxicol. Appl. Pharmacol. 104:17–24.

    PubMed  CAS  Google Scholar 

  • LeBel, C.P., Ischiropoulos, H., and Bondy, S.C., 1992, Evaluation of the probe 2’,7’-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress, Res. Chem. Toxicol. 5:227–231.

    CAS  Google Scholar 

  • Levy, D.I., Sucher, N.J., and Lipton, S.A., 1990, Redox modulation of NMDA receptor-mediated toxicity in mammalian central nervous neurons, Neurosci. Lett. 110:291–296.

    PubMed  CAS  Google Scholar 

  • Lewin, R., 1987, Drug trial for Parkinson’s, Science 236:1420.

    CAS  Google Scholar 

  • Liehr, J.G., and Roy, D., 1990, Free radical generation by redox cycling of estrogens, Free Rad. Biol. Med. 8:415–423.

    PubMed  CAS  Google Scholar 

  • Lohr, J.B., Kuczenski, R., Bracha, H.S., Moir, M., and Jeste, D.V., 1990, Increased indices of free radical activity in the cerebrospinal fluid of patients with tardive dyskinesia, Biol. Psychiatry 28:535–539.

    PubMed  CAS  Google Scholar 

  • Maellaro, E., Cassini, A.F., Del Bello, B., and Comporti, M., 1990, Lipid peroxidation and antioxidant systems in the liver injury produced by glutathione depleting agents, Biochem. Pharmacol. 39:1513–1521.

    PubMed  CAS  Google Scholar 

  • Mahadik, S.P., Hawver, D.B., Hungund, B.L., Li, Y.S., and Kanpiak, S.E., 1989, GM, ganglioside treatment after global ischemia protects changes in membrane fatty acids and properties of Na+, K+ ATP ase and Mg2+ ATPase, J. Neurosci. Res. 24:402–412.

    PubMed  CAS  Google Scholar 

  • Malis, C.D., and Bonventre, J.V., 1986, Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria, J. Biol. Chem. 261:14201–14208.

    PubMed  CAS  Google Scholar 

  • Mattia, C., LeBel, C.P., and Bondy, S.C., 1991, Effect of toluene and its metabolites on cerebral oxygen radical formation, Biochem. Pharmacol. 42:879–882.

    PubMed  CAS  Google Scholar 

  • McCrodden, J.M., Tipton, K.F., and Sullivan, J.P., 1990, The neurotoxicity of MPTP and the relevance to Parkinson’s disease, Pharmacol. Toxicol. 67:8–13.

    PubMed  CAS  Google Scholar 

  • Minotti, G., and Aust, S.D., 1989, The role of iron in oxygen radical mediated lipid peroxidation, Chem. Biol. Interact. 71:1–19.

    PubMed  CAS  Google Scholar 

  • Montgomery, R.D., 1979, In: Handbook of Clinical Neurology, Intoxications of the Nervous System, Vol. 32, Part I (P.J. Viwken and G.W. Bruyn, eds.), North Holland Publishing, Amsterdam, p. 515.

    Google Scholar 

  • Muma, N.A., Troncoso, J.C., Hoffman, P.N., Koo, E.H., and Price, D.L., 1988, Aluminum neurotoxicity: Altered expression of cytoskeletal genes, Mol. Brain Res. 3:115–122.

    CAS  Google Scholar 

  • Murphy, T.H., Myramato, M., Sastre, A., Schaar, R.L., and Coyle, J.T., 1989, Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress, Neuron. 2:1547–1558.

    PubMed  CAS  Google Scholar 

  • Nebert, D.W., Petersen, D.D., and Fornace, A.J., 1990, Cellular responses to oxidative stress: The [Ah] gene battery as a paradigm, Environ. Health Perspect. 88:13–25.

    PubMed  CAS  Google Scholar 

  • Nordmann, R., 1987, Oxidative stress from alcohol in the brain, Alcohol Suppl. 1:75–82.

    CAS  Google Scholar 

  • Odunze, I.N., Klaidman, L.K., and Adams, J.D., 1990, MPTP toxicity in the mouse brain and vitamin E, Neurosci. Leu. 108:346–349.

    CAS  Google Scholar 

  • Olesen, S.P., 1986, Rapid increase in blood-brain barrier permeability during severe hypoxia and metabolic inhibition, Brain Res. 368:24–29.

    PubMed  CAS  Google Scholar 

  • Oliver, C.N., Starke-Reed, P.E., Stadtman, E.R., Lin, G.J., Correy, J.M., and Floyd, R.A., 1990, Oxidative damage to brain proteins, loss of glutamine synthetase activity and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain, Proc. Natl. Acad. Sci. USA 87:5144–5147.

    PubMed  CAS  Google Scholar 

  • Olney, J.W., Ikonomidou, C., Mosinger, J.L., and Friedrich, G., 1989, MK-801 prevents hypobaric-ischemic neuronal degeneration in the infant rat brain, J. Neurosci. 9:1701–1704.

    PubMed  CAS  Google Scholar 

  • Olney, J.W., Zorumski, C.F., Stewart, G.R., Price, M.T., Wong, G., and Labruyere, J., 1990, Excitotoxicity of 1-DOPA and 6OH-DOPA: Implications for Parkinson’s and Huntington’s diseases, Exp. Neurol. 108:269–272.

    PubMed  CAS  Google Scholar 

  • Parkinson’s Study Group, 1989, DATATOP: A multicenter clinical trial in early Parkinson’s disease, Arch. Neurol. 46:1052–1060.

    Google Scholar 

  • Pellegini-Giampietro, D.E., Cherici, G., Alesiani, M., Carla, V., and Moroni, F., 1990, Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage, Neuroscience 10:1035–1041.

    Google Scholar 

  • Perrin, R., Minn, A., Ghersi-Egea, J.F., Grasshot, M.C., and Siest, G., 1990, Distribution of cytochrome p450 activities towards alkoxyresorufin derivatives in rat brain regions, subcellular fractions and isolated cerebral microvessels, Biochem. Pharmacol. 40:2145–2151.

    PubMed  CAS  Google Scholar 

  • Perry, T.L., Godin, D.V., and Hansen, S., 1982, Parkinson’s disease: A disorder due to nigral glutathione deficiency?, Neurosci. Leu. 33:305–310.

    CAS  Google Scholar 

  • Pezzoli, G., Ricciardi, S., Masotto, C., Mariani, C.B., and Cerenzi, A., 1990, N-hexane induces Parkinsonism in rats, Brain Res. 531:355–357.

    CAS  Google Scholar 

  • Phillips, S.C., 1987, Can brain lesions occur in experimental animals by administration of ethanol or acetaldehyde?, Acta. Med. Scand. [Suppl.] 717:67–72.

    CAS  Google Scholar 

  • Porta, E.A., 1988, Role of oxidative damage in the aging process, in: Cellular Antioxoidant Defense Mechanisms, Vol. III (C.K. Chow, ed.) CRC Press, New York, pp. 1–52.

    Google Scholar 

  • Ramstoek, E.R., Hoekstra, W.G., and Ganther, H.E., 1980, Trialkyl lead metabolism and lipid peroxidation in vivo in Vitamin E—and selenium-deficient rats as measured by ethane production, Toxicol. Appl. Pharmacol. 54:251–257.

    Google Scholar 

  • Raps, S.P., Lai, J.C.K., Hertz, L., and Cooper, A.J.L., 1989, Glutathione is present in high concentrations in cultured astrocytes, but not in cultured neurons, Brain Res. 493:398–401.

    PubMed  CAS  Google Scholar 

  • Ravindranath, V., Shivakumar, R., and Anandatheerthavarada, H.K., 1989, Low glutathione levels in aged rats, Neurosci. Lett. 101:187–190.

    PubMed  CAS  Google Scholar 

  • Rehman, S.V., 1984, Lead-induced regional lipid peroxidation in brain, Toxicol. Lett. 21:333–337.

    Google Scholar 

  • Rios, C., and Tapia, R., 1987, Changes in lipid peroxidation induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1methyl-4-phenylpyridinium in mouse brain homogenates, Neurosci. Lett. 77:321–326.

    PubMed  CAS  Google Scholar 

  • Rouach, H., Park, M.K., Orfanelli, M.T., Janvier, B., and Nordmann, R., 1987, Ethanol-induced oxidative stress in the rat cerebellum, Alcohol [Suppl] 1:207–211.

    CAS  Google Scholar 

  • Rouach, H., Houye, P., Orfanelli, M.T., Gentil, M., Bourdon, R., and Nordmann, R., 1990, Effect of acute ethanol administra-tion on the subcellular distribution of iron in rat liver and cerebellum, Biochem. Pharmacol. 39:1095–1100.

    PubMed  CAS  Google Scholar 

  • Sadrzadeh, S.M., Anderson, D.K., Panter, S.S., Hallaway, P.E., and Easton, J.W., 1987, Hemoglobin potentiates nervous system damage, J. Clin. Invest. 79:662–664.

    PubMed  CAS  Google Scholar 

  • Saggu, H., Cooksey, J., Dexter, D., Wells, F.R., Lees, A., Jenner, P., and Marsden, C.D., 1989, A selective increase in particulate superoxide dismutase activity in Parkinsonian substantia nigra, J. Neurochem. 53:692–697.

    PubMed  CAS  Google Scholar 

  • Sapolsky, C., Uno, H., and Rebert, C.S., 1990, Hippocampal damage associated with prolonged glucocorticoid exposure in primates, J. Neurosci. 10:2897–2902.

    PubMed  CAS  Google Scholar 

  • Saunders, R., and Horrocks, L.P., 1987, Eicosanoids, plasma membranes, and molecular mechanisms of spinal cord injury, Neurochem. Pathol. 7:1–22.

    PubMed  CAS  Google Scholar 

  • Savolainen, H., 1978, Superoxide dismutase and glutathione peroxidase activities in rat brain, Res. Commun. Chem. Pathol. Pharmacol. 21:173–175.

    PubMed  CAS  Google Scholar 

  • Sawada, M., and Carlson, J.C., 1987, Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat, Mech. Aging Dev. 41:125–137.

    PubMed  CAS  Google Scholar 

  • Schmucker, D.L., Vessey, D.A., Wang, R.K., James, J.L., and Maloney, A., 1984, Age-dependent alterations in the physicochemical properties of rat liver membranes, Mech. Aging Dev. 27:207–217.

    PubMed  CAS  Google Scholar 

  • Schwartz, R., Skolnick, P., and Paul, S.M., 1988, Regulation of y-aminobutyric acid/barbiturate receptor-gated chloride ion flux in brain vesicles by phospholipase A2: Possible role of oxygen radicals, J. Neurochem. 50:565–571.

    PubMed  CAS  Google Scholar 

  • Seto, N.O., Hyashi, S., and Terser, G.M., 1990, Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life-span, Proc. Natl. Acad. Sci. 87:4270–4274.

    PubMed  CAS  Google Scholar 

  • Sevanian, A., Nordenbrank, K., Kim, E., Ernster, L., and Hochstein, P., 1990, Microsomal lipid peroxidation: The role of NADPH-cytochrome P450 reductase and cytochrome P450, Free Rad. Biol. Med. 8:145–152.

    PubMed  CAS  Google Scholar 

  • Shoulson, I., 1989, Deprenyl and α-tocopherol antioxidative therapy of Parkinsonism (DATATOP), Acta Neurol. Scand. 126:171–175.

    CAS  Google Scholar 

  • Shukla, G.S., Srivastava, R.S., and Chandra, S.V., 1988, Prevention of cadmium-induced effects on regional glutathione status of rat brain by vitamine E, J. Appl. Toxicol. 8:355–358.

    PubMed  CAS  Google Scholar 

  • Siesjo, B.K., 1986, Calcium and ischemic brain damage, Exp. Neurol. 25 [Suppl. l]:45–56.

    CAS  Google Scholar 

  • Siesjo, B.K., 1988, Acidosis and ischemic brain damage, Neurochem. Pathol. 9:31–88.

    PubMed  CAS  Google Scholar 

  • Sinha, S., Toner, N., Chisuick, M., Davies, J., and Bogle, S., 1987, Vitamin E supplementation reduces frequency of periventricular hemorrhage in very preterm babies, Cancer 1:466–468.

    CAS  Google Scholar 

  • Skaper, S.D., Facci, L., Milani, D., and Leon, A., 1989, Monosialioganglioside GM, protects against anoxia-induced neuronal death in vitro, Exp. Neurol. 106:297–305.

    PubMed  CAS  Google Scholar 

  • Sokol, R.J., 1989, Vitamin E and neurologic function in man, Free Rad. Biol. Med. 6:189–207.

    PubMed  CAS  Google Scholar 

  • Stadtman, E.R., 1990, Metal ion catalyzed oxidation of proteins: Biochemical mechanism and biological consequences, Free Rad. Biol. Med. 9:315–325.

    PubMed  CAS  Google Scholar 

  • Tadolini, B., and Cabrini, L., 1990, The influence of pH on OH-scavenger inhibition of damage to deoxyribose by Fenton reaction, Mol. Cell. Biochem. 94:97–104.

    PubMed  CAS  Google Scholar 

  • Tanner, C.M., and Langston, J.W., 1990, Do environmental toxins cause Parkinson’s disease? A critical review, Neurology 40:17–30 [Suppl. 3].

    Google Scholar 

  • Tauck, D.L., and Ashbeck, G.A., 1990, Glycine synergistically potentiates the enhancement of LTP induced by a sulfhydryl reducing agent, Brain Res. 519:129–132.

    PubMed  CAS  Google Scholar 

  • Tayarani, I., Chaudiere, J., Lefauconnier, J.M., and Bourre, J.M., 1987, Enzymatic protection against peroxidative damage in isolated brain capillaries, J. Neurochem. 48:1399–1410.

    PubMed  CAS  Google Scholar 

  • Tonge, J.I., Burry, A.F., and Saal, J.R., 1977, Cerebellar calcification: A possible marker of lead poisoning, Pathology 9:289–300.

    PubMed  CAS  Google Scholar 

  • Vanella, A., Villa, R.F., Gorini, A., Campisi, A., and Giuffrida-Stella, A.M., 1989, Superoxide dismutase and cytochrome oxidase activities in light and heavy synaptic mitochondria from rat cerebral cortex during aging, J. Neurosci. Res. 22:351355.

    Google Scholar 

  • Verity, M.A., Brown, W.J., and Cheung, M., 1975, Organic mercurial encephalopathy: In vivo and in vitro effects of methyl mercury on synaptosomal respiration, J. Neurochem. 25:759–765.

    PubMed  CAS  Google Scholar 

  • Vitorica, J., Machado, A., and Satrustegui, J., 1984, Age-dependent variations in peroxide-utilizing enzymes from rat brain mitochondria and cytoplasm, J. Neurochem. 42:351–356.

    PubMed  CAS  Google Scholar 

  • Vlessis, A.A., Widener, L.L., and Bartos, D., 1990, Effect of peroxide, sodium, and calcium on brain mitochondrial respiration potential role in cerebral ischemia and reperfusion, J. Neurochem. 54:1412–1418.

    PubMed  CAS  Google Scholar 

  • Wahba, Z.Z., Murray, W.J., and Stohs, S.J., 1990, Desferrioxamine-induced alterations in hepatic iron distribution, DNA damage and lipid peroxidation in control and 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rats, J. Appl. Toxicol. 10:119–124.

    PubMed  CAS  Google Scholar 

  • Witz, G., Rao, G.S., and Goldstein, B.D., 1985, Short-term toxicity of trans,trans-muconaldehyde, Toxicol. Appl. Pharmacol. 80:511–516.

    PubMed  CAS  Google Scholar 

  • Yoshida, S., Busto, R., Watson, B.D., Sanitso, M., and Ginsberg, M.D., 1985, Postischemic cerebral lipid peroxidation in vitro: Modification by dietary vitamin E, J. Neurochem. 44:1593–1600.

    PubMed  CAS  Google Scholar 

  • Zawia, N.H., and Bondy, S.C., 1990, Electrically stimulated rapid gene expression in the brain: Ornithine decarboxylase and cfos, Brain Res. 7:243–247.

    CAS  Google Scholar 

  • Zemlan, F.P., Thienhaus, O.J., and Bosmann, H.B., 1989, Superoxide disimutase activity in Alzheimer’s disease: Possible mechanisms for paired helical filament formation, Brain Res. 476:160–162.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bondy, S.C., LeBel, C.P. (1992). Formation of Excess Reactive Oxygen Species within the Brain. In: Isaacson, R.L., Jensen, K.F. (eds) The Vulnerable Brain and Environmental Risks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3330-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3330-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6467-2

  • Online ISBN: 978-1-4615-3330-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics