Skip to main content

Developmental Regulation of Potassium Channels and the Impact on Neuronal Differentiation

  • Chapter
Ion Channels

Part of the book series: Ion Channels ((IC))

Abstract

Voltage-dependent potassium channels have a remarkable ubiquity, diversity, and importance in a wide variety of cell types. Recent progress in understanding their susceptibility to modulation by extracellular and intracellular agents and advances in the elucidation of their molecular structure have been the subject of several reviews (Rudy, 1988; jan and Jan, 1989). The present focus is prompted by emerging observations that expression of these channels in developing systems is regulated and of functional significance to subsequent differentiation of both rapid signaling capability and expression of other neuronal phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguayo, L. G., 1989, Post-natal development of K+ currents studied in isolated rat pineal cells, J. Physiol. (London) 414:283–300.

    CAS  Google Scholar 

  • Ahmed, Z., Connor, J. A., Tank, D. W., and Fellows, R. W., 1986, Expression of membrane currents in rat diencephalic neurons in serum-free culture, Dev. Brain Res. 28:221–231.

    Google Scholar 

  • Akers, R. F., Lovinger, D. M., Colley, P. A., Linden, D. J., and Routhenberg, A., 1986, Translocation of protein kinase C activity may mediate hippocampal long-term potentiation, Science 231:587–589.

    CAS  PubMed  Google Scholar 

  • Armstrong, D., and Eckert, R., 1987, Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization, Proc. Natl. Acad. Sci. USA 84:2518–2522.

    CAS  PubMed  Google Scholar 

  • Augustine, G. K., and Bezanilla, F., 1990, Phosphorylation modulates potassium conductance and gating current of perfused giant axons of squid, J. Gen. Physiol. 95:245–271.

    CAS  PubMed  Google Scholar 

  • Baccaglini, P. I., and Spitzer, N. C., 1977, Developmental changes in the inward current of the action potential of Rohon-Beard neurones, J. Physiol. (London) 271:93–117.

    CAS  Google Scholar 

  • Bader, C. R., Bertrand, D., and Dupin, E., 1985, Voltage-dependent potassium currents in developing neurones from quail mesencephalic neural crest, J. Physiol. (London) 366:129–151.

    CAS  Google Scholar 

  • Baldwin, T. J., Yoshikara, C. M., Blackner, K., Kintner, C. R., and Burden, S. J., 1988, Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis, J. Cell Biol. 106:469–478.

    CAS  PubMed  Google Scholar 

  • Baraban, J. M., Snyder, S. H., and Alger, B. E., 1985, Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: Electrophysiological effects of phorbol esters, Proc. Natl. Acad. Sci. USA 82:2538–2542.

    CAS  PubMed  Google Scholar 

  • Barbas, J. A., Rubio, N., Pedroso, E., Pongs, O., and Ferrus, A., 1989, Antibodies against Drosophila potassium channels identify membrane proteins across species, Mol. Brain Res. 5:171–176.

    CAS  PubMed  Google Scholar 

  • Barish, M. E., 1986, Differentiation of voltage-gated potassium current and modulation of excitability in cultured amphibian spinal neurones, J. Physiol. (London) 375:229–25O.

    CAS  Google Scholar 

  • Barres, B. A., Koroshetz, W. J., Swartz, K. J., Chun, L. L., and Corey, D. P., 1990, Ion channel expression by white matter glia: The O-2A progenitor cell, Neuron 4:507–524.

    CAS  PubMed  Google Scholar 

  • Baumann, A., Krah-Jentgens, I., Muller, R., Holtkamp, F., Seidel, R., Kecskemethy, N., Casal, J., Ferrus, A., and Pongs, O., 1987, Molecular organization of the maternal effect region of the Shaker complex of Drosophila: characterization of an IA channel transcript with homology to the vertebrate Na+ channel, EMBO J. 7:2457–2463.

    Google Scholar 

  • Baumann, A., Grupe, A., Ackermann, A., and Pongs, O., 1988, Structure of the voltage-dependent potassium channel is highly conserved from Drosophila to vertebrate central nervous systems, EMBO J. 7:2457–2463.

    CAS  PubMed  Google Scholar 

  • Beckh, S., and Pongs, O., 1990, Members of the RCK potassium channel family are differentially expressed in the rat nervous system, EMBO J. 9:777–782.

    CAS  PubMed  Google Scholar 

  • Belardetti, F., Schacher, S., and Siegelbaum, S. A., 1986, Action potentials, macroscopic and single channel currents recorded from growth cones of Aplysia neurones in culture, J. Physiol. (London) 374:289–313.

    CAS  Google Scholar 

  • Betsholtz, C., Baumann, A., Kenna, S., Ashcroft, F. M., Ashcroft, S. J. H., Berggren, P.-O., Grupe, A., Pongs, O., Rorsman, P., Sandblom, J., and Welsh, M., 1990, Expression of voltage-gated K+ channels in insulin-producing cells, FEBS Lett. 263:121–126.

    CAS  PubMed  Google Scholar 

  • Blackshaw, S. E., and Warner, A., 1976, Onset of acetylcholine sensitivity and endplate activity in developing myotome muscles of Xenopus, Nature 262:217–218.

    CAS  PubMed  Google Scholar 

  • Blair, L. A. C., 1983, The timing of protein synthesis required for the development of the sodium action potential in embryonic spinal neurons, J. Neurosci. 3:1430–1436.

    CAS  PubMed  Google Scholar 

  • Blair, L. A. C., and Dionne, V. E., 1985, Developmental acquisition of Ca2+tsensitivity by K+-channels in spinal neurones, Nature 315:329–331.

    CAS  PubMed  Google Scholar 

  • Block, M. L., and Moody, W. J., 1987, Changes in sodium, calcium and potassium currents during early embryonic development of the ascidian Boltenia villosa, J. Physiol (London) 393:619–634.

    CAS  Google Scholar 

  • Boyle, M. B., MacLusky, N. J., Naftolin, F., and Kaczmarek, L. K., 1987, Hormonal regulation of K+-channel messenger RNA in rat myometrium during oestrus cycle and in pregnancy, Nature 330:373–375.

    CAS  PubMed  Google Scholar 

  • Bregestovski, P. D., Printseva, O. Y., Serebryakov, V., Stinnakre, J., Turmin, A., and Zamoyski, V., 1988, Comparison of Ca2+-dependent K+ channels in the membrane of smooth muscle cells isolated from adult and foetal human aorta, Pfluegers Arch. 413:8–13.

    CAS  Google Scholar 

  • Brehm, P., and Henderson, L. P., 1988, Regulation of acetylcholine receptor channel function during development of skeletal muscle, Dev. Biol. 129:1–11.

    CAS  PubMed  Google Scholar 

  • Brehm, P., Kream, R. M., and Moody-Corbett, F., 1987, Transcriptional and translational requirements for development alterations in acetylcholine receptor function in Xenopus myotomal muscle, Dev. Biol. 123:222–23O.

    CAS  PubMed  Google Scholar 

  • Brenneman, D. E., Fitzgerald, S., and Litzinger, M. J., 1985, Neurotrophic action of VIP on spinal cord culture, Peptides 6:35–39.

    CAS  PubMed  Google Scholar 

  • Butler, A., Wei, A., Baker, K., and Salkoff, L., 1989, A family of putative potassium channel genes in Drosophila, Science 243:943–947.

    CAS  PubMed  Google Scholar 

  • Chandy, K. G., Williams, C. B., Spencer, R. H., Aguilar, B. A., Ghanshani, S., Tempel, B. L., and Gutman, G. A., 1990, A family of three mouse potassium channel genes with intronless coding regions, Science 247:973–975.

    CAS  PubMed  Google Scholar 

  • Choquet, D., Sarthou, P., Primi, D., Cazenave, P. A., and Korn, H., 1987, Cyclic AMP-modulated potassium channels in murine B cells and their precursors, Science 235:1211–1214.

    CAS  PubMed  Google Scholar 

  • Chow, I., and Cohen, M. W., 1983, Developmental changes in the distribution of acetylcholinereceptors in the myotomes of Xenopus laevis,J. Physiol. (London) 339:553–571.

    CAS  Google Scholar 

  • Christie, M. J., Adelman, J. P., Douglass, J., and North, R. A., 1989, Expression of a cloned rat brain potassium channel in Xenopus oocytes, Science 244:221–224.

    CAS  PubMed  Google Scholar 

  • Christie, M. J., North, R. A., Osborne, P. B., Douglass, J., and Adelman, J. P., 1990, Heteropolymeric potassium channels expressed in Xenopus oocytes from cloned sub-units, Neuron 3:405–411.

    Google Scholar 

  • Cohan, C. S., Connor, J. A., and Kater, S. B., 1987. Electrically and chemically mediated increases in intracellular calcium in neuronal growth cones, J. Neurosci. 7:3588–3599.

    CAS  PubMed  Google Scholar 

  • Connor, J. A., and Stevens, C. F., 1971, Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma, J. Physiol. (London) 213:31–53.

    CAS  Google Scholar 

  • Covarrubias, M., Wei, A., McKinnon, D., and Salkoff, L., 1990, Hybrid K+ channels are not formed between four subfamilies of K+ channel genes, Soc. Neurosci. Abstr. 16:3.

    Google Scholar 

  • DeCino, P., and Kidokoro, Y., 1985, Development and subsequent neural tube effects on theexcitability of cultured Xenopus myocytes, J. Neurosci. 5:1471–1482.

    Google Scholar 

  • DePeyer, J. E., Cachelin, A. B., Levitan, I. B., and Reuter, H., 1982, Ca2+-activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation, Proc. Natl. Acad. Sci. USA 79:4207–4211.

    PubMed  Google Scholar 

  • DeReimer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K., 1985, Enhancement of calcium current in Aplysia neurons by phorbol ester and protein kinase C, Nature 313:313–316.

    Google Scholar 

  • Desarmenien, M. G., and Spitzer, N. C., 1990, The maturation of the delayed rectifier potassium current is a calcium-dependent process, Soc. Neurosci. Abstr. 16:975.

    Google Scholar 

  • Detrick, R. J., Dickey, D., and Kintner, C. R., 1990, The effects of N-cadherin misexpression on morphogenesis in Xenopus embryos, Neuron 4:493–506.

    CAS  PubMed  Google Scholar 

  • Devereux, J., Haeberli, P., and Smithies, O., 1984, A comprehensive set of sequence analysis programs for the VAX, Nucleic Acids Res. 12:387–395.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dixon, J. E., and Kintner, C. R., 1989, Cellular contacts required for neural induction in Xenopus embryos: Evidence for two signals, Development 106:749–757.

    CAS  PubMed  Google Scholar 

  • Douglass, J., Osborne, P. B., Cai, Y.-C., Wilkinson, M., Christie, M. J., and Adelman, J. P., 1990, Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel, J. 1mmunol. 144:4841–485O.

    CAS  Google Scholar 

  • Drapeau, P., 1990, Loss of channel modulation by transmitter and protein kinase C during innervation of an identified leech neuron, Neuron 4:875–882.

    CAS  PubMed  Google Scholar 

  • Eng, D. L., Gordon, T. R., Kocsis, J. D., and Waxman, S. G., 1988, Development of 4-AP and TEA sensitivities in mammalian myelinated nerve fibers, J. Neurophysiol. 60:2168–2179.

    CAS  PubMed  Google Scholar 

  • Ernsberger, U., and Spitzer, N. C., 1990, Expression of potassium A current channels in Xenopus myocytes during differentiation in culture, Soc. Neurosci. Abstr. 16:507.

    Google Scholar 

  • Frech, G. C., VanDongen, A. M. J., Schuster, G., Brown, A. M., and Joho, R. H., 1989, A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning, Nature 340:642–645.

    CAS  PubMed  Google Scholar 

  • Folander, K., Smith, J. S., Antanavage, J., Bennett, C., Stein, R. B., and Swanson, R., 1990, Cloning and expression of the delayed rectifier IsK channel from neonatal rat heart and diethylstilbestrol-primed rat uterus, Proc. Natl. Acad. Sci. USA 87:2975–2979.

    CAS  PubMed  Google Scholar 

  • Fuchs, P., and Solowski, B., 1990, The acquisition of Ca-activated potassium currents by cochlear hair cells of the chick, Proc. R. Soc. London Ser. B 241:122–126.

    CAS  Google Scholar 

  • Glasbey, C. A., and Martin, R. J., 1988, The distribution of open channels in multi-channel patches, J. Neurosci. Methods 24:283–287.

    CAS  PubMed  Google Scholar 

  • Grega, D. S., Werz, M. A., and MacDonald, R. L., 1987, Forskolin and phorbol esters reduce the same potassium conductance of mouse neurons in culture, Science 235:345–348.

    CAS  PubMed  Google Scholar 

  • Grissmer, S., Dethlef, B., Wasmuth, J. J., Goldin, A. L., Gutman, G. A., Cahalan, M. D., and Chandy, K. G., 1990, Expression and chromosomal localization of a lymphocyte K+ channel gene, Proc. Natl. Acad. Sci. USA 87:9411–9415.

    CAS  PubMed  Google Scholar 

  • Grupe, A., Schroter, K. H., Rupersberg, J. P., Stocker, M., Drewes, M., Beckh, S., and Pongs, O., 1990, Cloning and expression of a human voltage-gated potassium channel. A novel member of the RCK potassium channel family, EMBO J. 9:1749–1756.

    CAS  PubMed  Google Scholar 

  • Guthrie, P. B., Lee, R. E., and Kater, S. B., 1989, A comparison of neuronal growth cone and cell body membrane: Electrophysiological and ultrastructural properties, J. Neurosci. 9:3596–3605.

    CAS  PubMed  Google Scholar 

  • Harris, G. L., Henderson, L. P., and Spitzer, N. C., 1988, Changes in densities and kinetics of delayed rectifier potassium channels during neuronal differentiation, Neuron 1:739–75O.

    CAS  PubMed  Google Scholar 

  • Haydon, P. G., McCobb, D. P., and Kater, S. B., 1987, The regulation of neurite outgrowth, growth cone motility, and electrical synaptogenesis by serotonin, J. Neurobiol. 18:197–215.

    CAS  PubMed  Google Scholar 

  • Henderson, L. P., and Spitzer, N. C., 1986, Autonomous early differentiation of neurons and muscle cells in single cell cultures, Dev. Biol. 113:381–387.

    CAS  PubMed  Google Scholar 

  • Henrichsen, R. D., Burgess-Cassler, A., Soltvedt, B. C., Hennessey, T., and Kung, C., 1986, Restoration by calmodulin of a Cat+-dependent K+ current missing in a mutant of Paramecium,Science 232:503–506.

    Google Scholar 

  • Hirano, T., and Takahashi, K., 1987, Development of ionic channels and cell-surface antigens in the cleavage-arrested one-cell embryo of an ascidian, J. Physiol. (London) 386:113–133.

    CAS  Google Scholar 

  • Hirano, T., Takahashi, K., and Yamashita, N., 1984, Determination of excitability types in blastomeres of the cleavage-arrested differentiated 1-cell embryo and the egg cell of ascidians, J. Physiol. (London) 347:327–344.

    CAS  Google Scholar 

  • Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117:500–544.

    CAS  Google Scholar 

  • Holliday, J., and Spitzer, N. C., 1990, Spontaneous calcium influx and its roles in differentiation of spinal neurons in culture, Dey. Biol. 141:13–23.

    CAS  Google Scholar 

  • Holliday, J., Adams, R. J., Sejnowski, T. J., and Spitzer, N. C., 1990, Spatial and temporal resolution of calcium transients produced by stimulation of differentiating amphibian spinal neurons, Soc. Neurosci. Abstr. 16:1172.

    Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1970, The period of susceptibility to the physiological effects of unilateral eye closure in kittens, J. Physiol. (London) 202:419–436.

    Google Scholar 

  • Hussy, N., 1991, Developmental change in calcium-activated chloride current during the differentiation of Xenopus spinal neurons in culture, Dev. Biol. 147:225–238.

    CAS  PubMed  Google Scholar 

  • Isacoff, E. Y., Jan, Y. N., and Jan, L. Y., 1990, Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes, Nature 345:530–534.

    CAS  PubMed  Google Scholar 

  • Iverson, L. E., Tanouye, M. A., Lester, H. A., Davidson, E., and Rudy, B., potassium channels expressed from Shaker locus cDNA, Proc. Natl. Acad. Sci. USA 85:5723–5727.

    Google Scholar 

  • Jan, L. Y., and Jan, Y. N., 1989, Voltage-sensitive ion channels, Cell 56:13–25.

    CAS  PubMed  Google Scholar 

  • Jan, L. Y., Jan, Y. N., and Dennis, M. J., 1977, Two mutations of synaptic transmission in Drosophila,Proc. R. Soc. London Ser. B 198:87–108.

    CAS  Google Scholar 

  • Josephson, I. R., and Sperelakis, N., 1990, Developmental increases in the inwardly-rectifying K+ current of embryonic chick ventricular myocytes, Biochim. Biophys. Acta 1052:123–127.

    CAS  PubMed  Google Scholar 

  • Kaczmarek, L. K., 1986, Phorbol esters, protein phosphorylation and the regulation of neuronal ion channels, J. Exp. Biol. 124:375–392.

    CAS  PubMed  Google Scholar 

  • Kalman, D., Wong, B., Horvai, A. E., Cline, M. J., and O’Lague, P. H., 1990, Nerve growth factor acts through cAMP-dependent protein kinase to increase the number of sodium channels in PC12 cells, Neuron 4:355–366.

    CAS  PubMed  Google Scholar 

  • Kamb, A., Iverson, L. E., and Tanouye, M. A., 1987, Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel, Cell 50:405–413.

    CAS  PubMed  Google Scholar 

  • Kamb, A., Tseng-Crank, J., and Tanouye, M. A., 1988, Multiple products of the Drosophila Shaker gene may contribute to potassium channel diversity, Neuron 1:421–43O.

    CAS  PubMed  Google Scholar 

  • Kamb, A., Weir, M., Rudy, B., Varmus, H., and Kenyon, C., 1989, Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification, Proc. Natl. Acad. Sci. USA 86:4372–4376.

    CAS  PubMed  Google Scholar 

  • Keating, M. J., Beazley, L. D., Feldman, J. D., and Gaze, R. M., 1975, Binocular interaction and intertectal neuronal connections in Xenopus laevis-Dependence upon developmental stage, Proc. R. Soc. London Ser. B 191:445–466.

    CAS  Google Scholar 

  • Kidokoro, Y., and Sand, O., 1989, Action potentials and sodium inward currents of developing neurons in Xenopus nerve-muscle cultures, Neurosci. Res. 6:191–208.

    CAS  PubMed  Google Scholar 

  • Kintner, C., 1988, Effects of altered expression of the neural cell adhesion molecule, N-CAM, on early neural development in Xenopus embryos, Neuron 1:545–555.

    CAS  PubMed  Google Scholar 

  • Kintner, C. R., and Melton, D. A., 1987, Expression of Xenopus N-CAM RNA is an early response of ectoderm to induction, Development 99:311–325.

    CAS  PubMed  Google Scholar 

  • Knudsen, E. I., Knudsen, P. F., and Esterly, S. D., 1984, A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl, J. Neurosci. 4:1012–102O.

    CAS  PubMed  Google Scholar 

  • Konishi, M., 1990, Voltage-gated potassium channels in myelinating Schwann cells in the mouse, J. Physiol. (London) 431:123–139.

    CAS  Google Scholar 

  • Koren, G., Liman, E R, Logothetis, O. E., Nadal-Ginard, B., and Hess, P., 1990, Gating mechanism of a cloned potassium channel expressed in frog oocytes and mammalian cells, Neuron 2:39–51.

    Google Scholar 

  • Krieger, C., and Sears, T. A., 1988, The development of voltage-dependent ionic conductances in murine spinal cord neurones in culture, Can. J. Physiol. Pharmacol. 66:1328–1336.

    CAS  PubMed  Google Scholar 

  • Lai, Y., Nairn, A. C., and Greengard, P., 1986, Autophosphorylation reversibly regulates the Ca“ /calmodulin-dependence of Ca2+/calmodulin-dependent protein kinase II, Proc. Natl. Acad. Sci. USA 83:4253–4257.

    CAS  PubMed  Google Scholar 

  • Leonard, R. J., Karschin, A., Jayashec-Aiyar, S., Davidson, N., Tanouye, M. A., Thomas, L., Thomas, G., and Lester, H. A., 1989, Expression of Drosophila Shaker potassium channels in mammalian cells infected with recombinant vaccinia virus, Proc. Natl. Acad. Sci. USA 86:7629–7633.

    CAS  PubMed  Google Scholar 

  • Lewis, R. S., and Cahalan, M. D., 1988a, Subset-specific expression of potassium channels in developing murine T lymphocytes, Science 239:771–775.

    CAS  Google Scholar 

  • Lewis, R. S., and Cahalan, M. D., 1988b, The plasticity of ion channels: Parallels between the nervous and immune systems, Trends Neurosci. 11:214–218.

    CAS  Google Scholar 

  • Lisman, J. E., 1985, A mechanism for memory storage insensitive to molecular turnover: A bistable autophosphorylating kinase, Proc. Natl. Acad. Sci. USA 82:3055–3057.

    CAS  PubMed  Google Scholar 

  • Lockery, S. R., and Spitzer, N. C., 1992, Reconstruction of action potential development from whole cell currents of differentiating spinal neurons, J. Neurosci. 12:2268–2287.

    CAS  PubMed  Google Scholar 

  • MacKinnon, R., and Miller, C., 1988, Mechanism of charybdotoxin block of Ca“-activated K+ channels, J. Gen. Physiol. 91:335–349.

    CAS  PubMed  Google Scholar 

  • MacKinnon, R., Reinhardt, P. and White, M. M., 1988, Charybdotoxin block of Shaker K+ channels suggests that different types of K+ channels share common structural features, Neuron, 1:997–1001.

    CAS  PubMed  Google Scholar 

  • McCobb, D. P., and Kater, S. B., 1988, Membrane voltage and neurotransmitter regulation of neuronal growth cone motility, Dey. Biol. 130:599–609.

    CAS  Google Scholar 

  • McCobb, D. P., Best, P. M., and Beam, K. G., 1989, Development alters the expression of calcium current in chick limb motoneurons, Neuron 2:1633–1643.

    CAS  PubMed  Google Scholar 

  • McCobb, D. P., Best, P. M., and Beam, K. G., 1990, The differentiation of excitability in embryonic chick limb motoneurons, J. Neurosci. 10:2974–2984.

    CAS  PubMed  Google Scholar 

  • McCormack, T., Vega-Saenz de Miera, E. C., and Rudy, B., 1990, Molecular cloning of a member of a third class of Shaker-family K+ channel genes in mammals, Proc. Natl. Acad. Sci. USA 87:5227–5231.

    CAS  PubMed  Google Scholar 

  • McKinnon, D., 1989, Isolation of a cDNA clone coding for a putative second potassium channel indicates the existence of a gene family, J. Biol. Chem. 264:8230–8236.

    CAS  PubMed  Google Scholar 

  • McKinnon, D., and Ceredig, R., 1986, Changes in the expression of potassium channels during mouse T cell development, J. Exp. Med. 164:1846–1861.

    CAS  PubMed  Google Scholar 

  • Mathers, L. H., Jr., and Ostrach, L. H., 1979, A critical period in the development of tectal neurons in the chick, as revealed by early enucleation, Brain Res. 170:219–23O.

    PubMed  Google Scholar 

  • Matsumoto, S. G., and Murphey, R. K., 1978, Sensory deprivation in the cricket nervous system: Evidence for a critical period, J. Physiol. (London) 285:2974–2984.

    Google Scholar 

  • Miller, S. G., and Kennedy, M. B., 1986, Regulation of brain type II Ca2+/calmodulindependent protein kinase by autophosphorylation: A Ca2+-triggered molecular switch, Cell 44:861–87O.

    CAS  PubMed  Google Scholar 

  • Mishina, M., Takai, T., Imotu, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C., and Sakmann, B., 1986, Molecular distinction between fetal and adult forms of muscle acetylcholine receptor, Nature 321:406–411.

    CAS  PubMed  Google Scholar 

  • Miyazaki, S., Takahashi, T., and Tsuda, K., 1972, Calcium and sodium contributions to regenerative responses in the embryonic excitable cell membrane, Science 176:1441–1443.

    CAS  PubMed  Google Scholar 

  • Miyazaki, S., Takahashi, T., Tsuda, K., and Yoshii, M., 1974, Analysis of nonlinearity observed in the current-voltage relation of the tunicate embryo, J. Physiol. (London) 238:55–77.

    CAS  Google Scholar 

  • Montarolo, P. G., Goelet, P., Castellucci, V. F., Morgan, J., Kandel, E. R., and Schacher, S., 1986, A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia, Science 234:1249–1254.

    CAS  PubMed  Google Scholar 

  • Murai, T., Kakizuka, A., Takumi, T., Ohkubo, H., and Nakanishi, S., 1989, Molecular cloning and sequence analysis of a human genomic DNA encoding a novel membrane protein which exhibits a slowly activating potassium channel activity, Biochem. Biophys. Res. Commun. 161:176–181.

    CAS  PubMed  Google Scholar 

  • Nerbonne, J. M., and Gurney, A. M., 1989, Development of excitable membrane properties in mammalian sympathetic neurons, J. Neurosci. 9:3272–3286.

    CAS  PubMed  Google Scholar 

  • Nerbonne, J. M., Gurney, A. M., and Rayburn, H. B., 1986, Development of the fast, transient outward K+ current in embryonic sympathetic neurones, Brain Res. 378:197–202.

    CAS  PubMed  Google Scholar 

  • O’Dowd, D. K., 1983, RNA synthesis dependence of action potential development in spinal cord neurones, Nature 303:619–621.

    PubMed  Google Scholar 

  • O’Dowd, D. K., Ribera, A. B., and Spitzer, N. C., 1988, Development of voltage-dependent calcium, sodium and potassium currents in Xenopus spinal neurons, J. Neurosci. 8:792–805.

    PubMed  Google Scholar 

  • Okado, H., and Takahashi, K., 1988, A simple “neural-induction” model with two interacting cleavage-arrested blastomeres, Proc. Natl. Acad. Sci. USA 85:6197–6201.

    CAS  PubMed  Google Scholar 

  • Okado, H., and Takahashi, K., 1990a, Differentiation of membrane excitability in isolated cleavage-arrested blastomeres from early ascidian embryos, J. Physiol. (London) 427:583–602.

    CAS  Google Scholar 

  • Okado, H., and Takahashi, K., 1990b, Induced neural-type differentiation in the cleavage-arrested blastomere isolated from early ascidian embryos, J. Physiol. (London) 427:603–623.

    CAS  Google Scholar 

  • Papazian, D. M., Schwarz, T. L., Tempel, B. L., Jan, Y. N., and Jan, L. Y., 1987, Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila, Science 237:749–753.

    CAS  PubMed  Google Scholar 

  • Pettigrew, A. G., Crepel, F., and Krupa, M., 1988, Development of ionic conductances in neurons of the inferior olive in the rat: An in vitro study, Proc. R. Soc. London Ser. B. 234:199–218.

    CAS  Google Scholar 

  • Pongs, O., Kecskemethy, N., Muller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H. H., Canal, I., Llamazares, S., and Ferrus, A., 1988, Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila, EMBO J. 7:1087–1096.

    CAS  PubMed  Google Scholar 

  • Prichard, R. G., and Lickey, M. E., 1981, In vitro resetting of the circadian clock in the Aplysia eye. II. The critical period for optic nerve activity, J. Neurosci. 1:840–845.

    CAS  PubMed  Google Scholar 

  • Rehm, H., Newitt, R. A., and Tempel, B. L., 1989, Immunological evidence for a relationship between the dendrotoxin-binding protein and the mammalian homologue of the Drosophila Shaker K+ channel, FEBS Lett. 249:224–228.

    CAS  PubMed  Google Scholar 

  • Ribera, A. B., 1990, A potassium channel gene is expressed at neural induction, Neuron 5:691–701.

    CAS  PubMed  Google Scholar 

  • Ribera, A. B., and Spitzer, N. C., 1989, A critical period of transcription required for differentiation of the action potential of spinal neurons, Neuron 2:1055–1062.

    CAS  PubMed  Google Scholar 

  • Ribera, A. B., and Spitzer, N. C., 1990, Differentiation of IKA in amphibian spinal neurons, J. Neurosci. 10:1886–1991.

    CAS  PubMed  Google Scholar 

  • Ribera, A. B., and Spitzer, N. C., 1991, The differentiation of potassium current in embryonic amphibian myocytes, Dev. Biol. 144:119–128.

    CAS  PubMed  Google Scholar 

  • Richter, K., Grunz, H., and Dawid, I. B., 1988, Gene expression in the embryonic nervous system of Xenopus laevis, Proc. Natl. Acad. Sci. USA 85:8086–809O.

    CAS  PubMed  Google Scholar 

  • Rudy, B., 1988, Diversity and ubiquity of K channels, Neuroscience 25:729–75O.

    CAS  PubMed  Google Scholar 

  • Ruppersberg, J. P., Schroter, K. H., Sakmann, B., Stocker, M., Sewing, S., and Pongs, O., 1990, Heteromultimeric channels formed by rat brain potassium-channel proteins, Nature 345:535–537.

    CAS  PubMed  Google Scholar 

  • Saitoh, T., and Schwartz, J. H., 1985, Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin dependent protein kinase produces an autonomous enzyme in Aplysia neurons, J. Cell. Biol. 100:835–842.

    CAS  PubMed  Google Scholar 

  • Salkoff, L., 1985, Development of ion channels in the flight muscle of Drosophila, J. Physiol. (Paris) 80:275–282.

    CAS  Google Scholar 

  • Salkoff, L. B., and Wyman, R. J., 1983, Ion currents in Drosophila flight muscles, J. Physiol. (London) 337:687–709.

    CAS  Google Scholar 

  • Scharf, S. R., and Gerhart, J. C., 1983, Axis determination in eggs of Xenopus laevis: A critical period before first cleavage, identified by the common effects of cold, pressure and ultraviolet irradiation, Dev. Biol. 99:75–87.

    CAS  PubMed  Google Scholar 

  • Schlichter, L., Sidell, N., and Hagiwara, S., 1986, K channels are expressed early in human T-cell development, Proc. Natl. Acad. Sci. USA 83:5625–5629.

    CAS  PubMed  Google Scholar 

  • Schuetze, S. M. and Role, L. R., 1987, Developmental regulation of nicotinic acetylcholine receptors, Annu. Rev. Neurosci. 10:403–457.

    CAS  PubMed  Google Scholar 

  • Schwartz, J. H., and Greenberg, S. M., 1987, Molecular mechanisms for memory: Second-messenger induced modifications of protein kinases in nerve cells, Annu. Rev. Neurosci. 10:459–476.

    CAS  PubMed  Google Scholar 

  • Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., and Jan, L. Y., 1988, Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila, Nature 331:137–142.

    CAS  PubMed  Google Scholar 

  • Schwarz, T. L., Papazian, D. M., Carretto, R. C., Jan, Y. N., and Jan, L. Y., 1990, Immunological characterization of K+ channel components from the Shaker locus and differential distribution of splicing variations in Drosophila, Neuron 2:119–127.

    Google Scholar 

  • Sharpe, C. R., 1988, Developmental expression of a neurofilament-M and two vimentin-like genes in Xenopus laevis, Development 103:269–277.

    CAS  PubMed  Google Scholar 

  • Sharpe, C. R., Fritz, A., DeRobertis, E. M., and Gurdon, J. B., 1987, A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction, Cell 50:749–758.

    CAS  PubMed  Google Scholar 

  • Sheard, P., McCaig, C. D., and Harris, A. J., 1984, Critical periods in rat motoneuron development, Dev. Biol. 102:21–31.

    CAS  PubMed  Google Scholar 

  • Siegelbaum, S. A., Camardo, J. S., and Kandel, E. R., 1982, Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones, Nature 299:413–417.

    CAS  PubMed  Google Scholar 

  • Sigurdson, W. J., and Morris, C. E., 1989, Stretch-activated ion channels in growth cones of snail neurons, J. Neurosci. 9:2801–2808.

    CAS  PubMed  Google Scholar 

  • Simoncini, L., Block, M. L., and Moody, W. J., 1988, Lineage-specific development of calcium currents during embryogenesis, Science 242:1572–1575.

    CAS  PubMed  Google Scholar 

  • Soliven, B., Szuchet, S., Amason, B. G., and Nelson, D. J., 1989, Expression and modulation of K+ currents in oligodendrocytes: Possible role in myelinogenesis, Dev. Neurosci. 11:118–131.

    CAS  PubMed  Google Scholar 

  • Sontheimer, H., Trotter, J., Schachner, M., and Kettenmann, H., 1989, Channel expression correlates with differentiation stage during the development of oligodendrocytes from their precursor cells in culture, Neuron 2:1135–1145.

    CAS  PubMed  Google Scholar 

  • Spitzer, N. C., 1976, The ionic basis of the resting potential and a slow depolarizing reponse in Rohon-Beard neurones of Xenopus tadpoles, J. Physiol. (London) 255:105–135.

    CAS  Google Scholar 

  • Spitzer, N. C., 1985, The control of development of neuronal excitability, in: Molecular Bases of Neural Development (G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Rockefeller University Press, New York, pp. 67–88.

    Google Scholar 

  • Spitzer, N. C., 1988, Reconstruction of action potentials of embryonic spinal neurons from whole cell voltage clamped currents, Biophys. Soc. Abstr. 53:258a.

    Google Scholar 

  • Spitzer, N. C., and Lamborghini, J. E., 1976, The development of the action potential mechanism of amphibian neurons isolated in cell culture, Proc. Natl. Acad. Sci. USA 73:1641–1645.

    CAS  PubMed  Google Scholar 

  • Stocker, M., Stühmer, W., Wittka, R., Wang, X., Müller, R., Ferrus, A., and Pongs, O., 1990, Alternative Shaker transcripts express either rapidly inactivating or noninactivating K+ channels, Proc. Natl. Acad. Sci. USA 87:8903–8907.

    CAS  PubMed  Google Scholar 

  • Streit, J., and Lux, H. D., 1989, Distribution of calcium currents in sprouting PC12 cells, J. Neurosci. 9:4190–4199.

    CAS  PubMed  Google Scholar 

  • Strong, J. A., Fox, A. P., Tsien, R. W., and Kaczmarck, L. K., 1987, Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons, Nature 325:714–717.

    CAS  PubMed  Google Scholar 

  • Stühmer, W., Stocker, M., Sakmann, B., Seeburg, P., Baumann, A., Grupe, A., and Pongs, O., 1989a, Potassium channels expressed from rat brain cDNA have delayed rectifier properties, FEBS Lett. 242:199–206.

    Google Scholar 

  • Stiihmer, W., Ruppersberg, J. P., Schroter, K. H., Sakmann, B., Stocker, M., Giese, K. P., Perschke, A., Baumann, A., and Pongs, O., 1989b, Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain, EMBO J. 8:3235–3244.

    Google Scholar 

  • Swanson, R., Marshall, J., Smith, J. S., Williams, J. B., Boyle, M. B., Folander, K., Luncau, C. J., Antanavage, J., Oliva, C., Buhrow, S. A., Bennett, C., Stein, R. B., and Kaczmarek, L. K., 1990, Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain, Neuron 4:929–939.

    CAS  PubMed  Google Scholar 

  • Takahashi, K., and Yoshii, M., 1981, Development of sodium, calcium and potassium channels in the cleavage-arrested embryo of an ascidian, J. Physiol. (London) 255:527–561.

    Google Scholar 

  • Takahashi, K. S., Miyazaki, S, and Kidokoro, Y., 1971, Development of excitability in embryonic muscle cell membranes in certain tunicates, Science 171:415–418.

    CAS  PubMed  Google Scholar 

  • Takumi, T., Ohkubo, H., and Nakanishi, S., 1988, Cloning of a membrane protein that induces a slow voltage-gated potassium current, Science 242:1042–1045.

    CAS  PubMed  Google Scholar 

  • Tanouye, M. A., Ferrus, A., and Fujita, S. C., 1981, Abnormal action potentials associated with the Shaker complex locus of Drosophila, Proc. Natl. Acad. Sci. USA 78:6548–6552.

    CAS  PubMed  Google Scholar 

  • Tempel, B. L., Papazian, D. M., Schwarz, T. L., Jan, Y. N., and Jan, L. Y., 1987, Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila,Science 237:770–775.

    CAS  PubMed  Google Scholar 

  • Tempel, B. L., Jan, Y. N., and Jan, L. Y., 1988, Cloning of a probable potassium channel gene from mouse brain, Nature 332:837–839.

    CAS  PubMed  Google Scholar 

  • Timpe, L. C., Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., and Jan, L. Y., 1988a, Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes, Nature 331:143–145.

    CAS  Google Scholar 

  • Timpe, L. C., Jan, Y. N., and Jan, L. Y., 1988b, Four cDNA clones from Shaker locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes, Neuron 1:659–667.

    CAS  Google Scholar 

  • van Huizen, F., Romijn, H. J., and Corner, M. A., 1987, Indications for a critical period for synapse elimination in developing rat cerebral cortex cultures, Dev. Brain Res. 31:1–6.

    Google Scholar 

  • Warner, A. E., 1973, The electrical properties of the ectoderm in the amphibian embryo during induction and early development of the nervous system, J. Physiol. (London) 235:267–286.

    CAS  Google Scholar 

  • Wei, A., and Salkoff, L., 1986, Occult Drosophila calcium channels and twinning of calcium and voltage-activated potassium channels, Science 223:780–782.

    Google Scholar 

  • Wei, A., Covarrubias, M., Butler, A., Baker, K., Pak, M., and Salkoff, L., 1990, K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse, Science 248:599–603.

    CAS  PubMed  Google Scholar 

  • Weiss, R. E., and Horn, R., 1986, Functional differences between two classes of sodium channels in developing rat skeletal muscle, Science 223:361–364.

    Google Scholar 

  • Willmund, R., Mitshulat, H. and Schneider, K., 1986, Long-term modulation of Ca2+-stimulated autophosphorylation and subcellular distribution of the Ca2+/calmodulindependent protein kinase in the brain of Drosophila, Proc. Natl. Acad. Sci. USA 83:9789–9793.

    CAS  PubMed  Google Scholar 

  • Wilson, G. F., and Chiu, S. F., 1990, Potassium channel regulation in Schwann cells during early developmental myelinogenesis, J. Neurosci. 10:1615–1625.

    CAS  PubMed  Google Scholar 

  • Yamada, W. M., Koch, C., and Adams, P. R., 1989, Multiple channels and calcium dynamics, in: Methods in Neuronal Modeling (C. Koch and I. Segev, eds.), MIT Press, Cambridge, Mass, 97–134 pp.

    Google Scholar 

  • Yokoyama, S., Imoto, K., Kawamura, T., Higashida, H., Iwabe, N., Miayata, T., and Numa, S., 1989, Potassium channels from NG108–15 neuroblastoma-glioma hybrid cells: Primary structure and functional expression from cDNAs, FEBS Lett. 259:37–42.

    CAS  PubMed  Google Scholar 

  • Yool, A. J., Dionne, V. E., and Gruol, D. L., 1988, Developmental changes in K+-selective channel activity during differentiation of the Purkinje neuron in culture, J. Neurosci. 8:1971–198O.

    CAS  PubMed  Google Scholar 

  • Ypey, D. L., and Clapham, D. E., 1984, Development of a delayed outward-rectifier K+ conductance in cultured mouse peritoneal macrophages, Proc. Natl. Acad. Sci. USA 81:3083–3087.

    CAS  PubMed  Google Scholar 

  • Zagotta, W. N., Hoshi, T., and Aldrich, R. W., 1989, Gating of single Shaker potassium channels in Drosophila muscle and in Xenopus occytes injected with Shaker mRNA, Proc. Natl. Acad. Sci. USA 86:7243–7247.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ribera, A.B., Spitzer, N.C. (1992). Developmental Regulation of Potassium Channels and the Impact on Neuronal Differentiation. In: Narahashi, T. (eds) Ion Channels. Ion Channels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3328-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3328-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6466-5

  • Online ISBN: 978-1-4615-3328-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics