Skip to main content
  • 160 Accesses

Abstract

Line broadening for the proton energy spectrum from the deuterium-deuterium fusion reaction is used to extract the effective deuterium temperature in the recent clusterimpact fusion experiments. The two primary contributions to the proton line width are due to temperature and kinematic broadening. By deconvolving these contributions, we have determined a temperature ∼ 20 keV for the deuterium-deuterium fusion reaction. This is substantially hotter than conventional estimates. Our analysis shows that the proton spectrum is an additional diagnostic tool that can rule out high energy monoenergetic contaminants in explaining the unexpectedly high yield. Furthermore, the proton spectrum indicates that the high temperature results from a one-dimensional rather than a three-dimensional velocity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Beuhler, G. Friedlander, and L. Friedman, Phys. Rev. Lett. 63, 1292 (1989).

    Article  Google Scholar 

  2. R. J. Beuhler, Y. Y. Chu, G. Friedlander, L. Friedman, and W. Kunnmann, J. Phys. Chem. 94, 7665 (1990).

    Article  Google Scholar 

  3. J. Fallavier, R. Kirsch, J. C. Poizat, J. Remillieux, and J. P. Thomas, Phys. Rev. Lett. 65, 621 (1990).

    Article  Google Scholar 

  4. Y. K. Bae, D. C. Lorents, and S. E. Young, SRI Report MP91-023 (February 1, 1991) to be published in Phys. Rev. A.

    Google Scholar 

  5. R. J. Beuhler, Y. Y. Chu, G. Friedlander, L. Friedman, A. G. Alessi, V. LoDestro, and J. P. Thomas, Phys. Rev. Lett. 67, 473 (1991).

    Article  Google Scholar 

  6. M. Rabinowitz, Mod. Phys. Lett. B4, 665 (1990).

    MathSciNet  Google Scholar 

  7. Y. E. Kim, Fusion Technology 17, 507 (1990).

    Google Scholar 

  8. C. Carraro, B. Q. Chen, S. Schramm, and S. E. Koonin, Phys. Rev. A 42, 1379 (1990).

    Article  Google Scholar 

  9. P. M. Echenique, J. R. Manson, and R. H. Ritchie, Phys. Rev. Lett. 64, 1413 (1990).

    Article  Google Scholar 

  10. M. Rabinowitz, Y. E. Kim, R. A. Rice, and G. S. Chulick, in AIP Proceedings (No. 228) of Int. Work, on Anom. Nucl. Eff. in Deuterium/Solid Syst., Oct. 22-24, 1990, pp. 846-866.

    Google Scholar 

  11. Y. E. Kim, M. Rabinowitz, G. S. Chulick, and R. A. Rice, Mod. Phys. Lett. B5, 427 (1991).

    Google Scholar 

  12. Y. E. Kim, R. A. Rice, G. S. Chulick, and M. Rabinowitz, Mod. Phys. Lett. A6, 2259 (1991).

    Google Scholar 

  13. Y. E. Kim, G. S. Chulick, R. A. Rice, M. Rabinowitz, and Y. K. Bae, Chem. Phys. Lett. 184, 465 (1991).

    Article  Google Scholar 

  14. Y. E. Kim, M. Rabinowitz, Y. K. Bae, G. S. Chulick, and R. A. Rice, Mod. Phys. Lett. B5, 941 (1991).

    Google Scholar 

  15. Y. E. Kim, M. Rabinowitz, Y. K. Bae, G. S. Chulick, and R. A. Rice, “Hot Plasma Shock-Wave Theory of Cluster-Impact Fusion”, to be published in AIP Proc. of Int. Symp., Nikko, Japan, June 6-8, 1991.

    Google Scholar 

  16. Y. E. Kim, M. Rabinowitz, Y. K. Bae, G. S. Chulick, and R. A. Rice, “Cluster Impact Hot fusion”, in Proc. of ICENES’ 91, to be published in Fusion Technology.

    Google Scholar 

  17. M. I. Haftel, “Molecular Dynamics of 300 keV (D2O)100 Clusters on Ti — D”, submitted to Phys. Rev. A.

    Google Scholar 

  18. M. Hautala, Z. Pan, and P. Sigmund, “Accelerated Deuterons in Cluster Fusion Experiments”, submitted to Phys. Rev. A.

    Google Scholar 

  19. O. H. Crawford, “Cluster-Impact Fusion: Yields from Binary-Collision Sequences”, submitted to Radiation Effects and Defects in Solid.

    Google Scholar 

  20. G. Lehner and F. Pohl, Z. Physik 207, 83 (1967).

    Article  Google Scholar 

  21. G. Lehner, Z. Physik 232, 174 (1970).

    Article  Google Scholar 

  22. H. Brysk, Plasma Phys. 15, 611 (1973).

    Article  Google Scholar 

  23. W. A. Fowler, G. R. Caughlan, and B. A. Zimmermann, Ann. Rev. Astr. Astrophysics 5, 525 (1967); 13, 69 (1975).

    Article  Google Scholar 

  24. H. H. Anderson and J. F. Ziegler, Hydrogen Stopping Powers and Ranges in All Elements, Pergamon Press, New York (1977).

    Google Scholar 

  25. A. Hasegawa et al., Phys. Rev. Lett. 56, 139 (1986).

    Article  Google Scholar 

  26. Y. E. Kim in Laser Interaction and Related Plasma Phenomena (International Conference Series), Vol. 9, edited by H. Hora and G. H. Miley, Plenum, New York (1991), pp. 583–592.

    Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, London (1959).

    Google Scholar 

  28. Ya. B. Zel-dovich and Yu. P. Raiser, Physics of Shock Waves and High Temperature Thermodynamics Phenomena, 2 vols., Academic Press, New York (1967).

    Google Scholar 

  29. F. Winterberg, Z. Naturf. 19a, 23 (1964).

    Google Scholar 

  30. H. Polachek and R. J. Seeger, in Fundamentals of Gas Dynamics (edited by H. W. Emmons), Princeton University Press (1958), Section E, pp. 482-522.

    Google Scholar 

  31. M. W. Matthew, R. J. Beuhler, M. Ledbetter, and L. Friedman, Nucl. Inst. & Meth. Phys. Res. B14, 448 (1986).

    Article  Google Scholar 

  32. G. Birkhoff, D. P. MacDougall, E. M. Pugh, and Sir G. Taylor, J. Appl. Phys. 19, 563 (1948).

    Article  Google Scholar 

  33. R. J. Beuhler, G. Friedlander, and L. Friedman, “Fusion Reactions in Dense Hot Atom Assemblies Generated by Cluster Impact,” to be published in Accts. Chem. Res. (1991).

    Google Scholar 

  34. A. R. Kantrowitz, in Fundamentals of Gas Dynamics (edited by H. W. Emmons), Princeton University Press (1958), Section C, pp. 350-413.

    Google Scholar 

  35. M. Rabinowitz, Mod. Phys. Lett. B4, 233 (1990).

    MathSciNet  Google Scholar 

  36. G. Chambers, G. Hubler, and K. Grabowski, in AIP Conf. Proc. (No. 228), pp. 383-396.

    Google Scholar 

  37. E. Cecil, in AIP Conf. Proc. (No. 228), pp. 375-382.

    Google Scholar 

  38. Y. E. Kim, in AIP Conf. Proc. (No. 228), pp. 807-826.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, Y.E., Rabinowitz, M., Yoon, JH., Rice, R.A. (1992). Hot Plasma Model for Cluster Impact Fusion. In: Miley, G.H., Hora, H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3324-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3324-5_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6464-1

  • Online ISBN: 978-1-4615-3324-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics