Skip to main content

Laser Fusion — High Density Compression Experiment and Ignition Program with Gekko XII

  • Chapter

Abstract

High density compression of main fuel and stable formation of hot spark at the center of imploded core have been investigated to obtain the scaling and the requirements for fusion ignition and high gain. For this purpose, the experimental data of the high density compression up to 600 times solid density with hollow shell pellet have been analyzed and compared with simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Nakai, Bull. Am. Phys. Soc. 34, 2040 (1989).

    Google Scholar 

  2. S. Nakai et al., in Laser Interaction and Related Plasma Phenomena Volume 9, edited by H. Hora and G. H. Miley (Plenum Press, New York, 1991) p. 25.

    Google Scholar 

  3. H. Azechi et al., Laser and Particle Beams 9, 193 (1991).

    Article  Google Scholar 

  4. E. M. Campbell et al., Appl. Phys. Lett. 36, 965 (1980)

    Article  Google Scholar 

  5. H. Azechi et al. Bull. Am. Phys. Soc. 35, 1970 (1990).

    Google Scholar 

  6. Y. Setsuhara et al., Laser and Particle Beams 8, 609 (1990).

    Article  Google Scholar 

  7. S. W. Haan, Phys. Rev. A 39, 5812 (1989).

    Article  Google Scholar 

  8. H. Takabe, L. Montierth, and R. L. Morse, Phys. Fluids 2 6, 2299 (1983); H. Takabe, K. Mima, L. Montierth, and R. L. Morse, ibid. 28, 3676 (1985).

    Article  Google Scholar 

  9. M. Tabak, D. H. Munro, and J. D. Lindl, Phys. Fluids B 2, 1007 (1990); J. H. Gardner, S. E. Bodner, and J. P. Dahlburg, ibid. 3, 1070 (1991).

    Article  Google Scholar 

  10. W. M. Manheimer D. G. Colombant, and J. H. Gardner, Phys. Fluids 25, 1644 (1982).

    Article  Google Scholar 

  11. H. Takabe et al., Phys. Fluids 31, 2884 (1988); H. Nishimura et al., Phys Rev. A 43, 3073 (1991).

    Article  Google Scholar 

  12. K. Takami and H. Takabe, Tech. Rep. Osaka Univ. 40, 159 (1990).

    Google Scholar 

  13. J. R. Freeman et al., Nucl. Fusion 17, 223 (1977); F. Hattori, H. Takabe and K. Mima, Phys. Fluids 29, 1719 (1986); H. Sakagami and K. Nishihara, Phys. Rev. Lett. 65, 432 (1990), Phys Fluids B 2, 2715 (1990).

    Article  Google Scholar 

  14. J. Mayer-ter-Vehn, Nucl. Fusion 22, 561 (1982).

    Article  Google Scholar 

  15. R. L. McCrory et al., in the proceedings of IAEA-TCM, Osaka, April 14-19 (1991).

    Google Scholar 

  16. H. Takabe and K. Mima, ILE Progress Report, ILE 8713P, Osaka University, Dec. 15 (1987).

    Google Scholar 

  17. T. Norimatsu, H. Itoh, C. Chen, M. Yasumoto, M. Tsukamoto, K. A. Tanaka, T. Yamanaka, and S. Nakai, submitted to J. Vac. Sic. Tech.

    Google Scholar 

  18. M. Tsukamoto, R. Kodama, M. Kado, H. Itoh, M. Yasumoto, T. Norimatsu, M. Nakai, K.A. Tanaka, T. Yamanaka, and S. Nakai, Rev. Laser Engineering, 18, 724 (1990).

    Article  Google Scholar 

  19. M. Saito, S. Urushihara, K. Suzuki, K. A. Tanaka, T. Yamanaka, and S. Nakai, Rev. Laser Engineering, 17, 721 (1989).

    Article  Google Scholar 

  20. R. Kodama et al., to be published.

    Google Scholar 

  21. K.A. Tanaka et al., to be published.

    Google Scholar 

  22. M. Murakami and J. Meyer-ter-Vehn, Nucl. Fusion 31, 1315 (1991).

    Article  Google Scholar 

  23. M. Murakami and J. Meyer-ter-Vehn, Nucl. Fusion 31, 1333 (1991).

    Article  Google Scholar 

  24. H. Nishi’mura et al., Kakuyogo Kenkyu 63, 219 (1990) in Japanese.

    Article  Google Scholar 

  25. R. Sigel et al. and H. Nishimura et al., 13th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, IAEA-CN-53/ B-2-1, Washington 1-8 October 1991.

    Google Scholar 

  26. H. Nishimura et al., to appear in Phys. Rev. A (1991).

    Google Scholar 

  27. R. Sigel et al., Phys. Rev. Lett. 65, 587 (1990), the longer version is to appear in Phys. Rev. A (1991).

    Article  Google Scholar 

  28. R. Pakula and R. Sigel, Phys. Fluids 28; 232 (1985), ibid 29, 1340(E) (1986).

    Google Scholar 

  29. R. Ramis, R. Schmalz, and J. Meyer-ter-Vehn, Computer Phys. Commun. 49, 475 (1988).

    Article  Google Scholar 

  30. M. Nakamura et al., to be published.

    Google Scholar 

  31. T. Endo, H. Shiraga and Y. Kato, Phys. Rev. A 42, 918 (1990).

    Article  Google Scholar 

  32. H. Takabe, “Radiation Transport and Atomic Modeling for Laser Produced Plasmas”, ILE Research Report 9008p, Sep. 10 (1990).

    Google Scholar 

  33. Y. Kato et al., 13th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, IAEA-CN53/13-2-2, Washington, 1-6 October 1990.

    Google Scholar 

  34. M. Katayama, et al, Rev. Sci. Instrum., 62, 124 (1991).

    Article  Google Scholar 

  35. The higher pR value of 10 mg/cm2 was obtained, in the similar way, for a larger diameter (∼ 380 μm) capsule. But the value has not been confirmed yet by the knock-on measurement for the same laser shot.

    Google Scholar 

  36. Y Kato, et al., Phys. Rev. Letters, 5 3, 1057 (1984).

    Article  Google Scholar 

  37. K. Tsubakimoto, Technol. Repts. Osaka Univ., 41, 125 (1991).

    Google Scholar 

  38. M. Born and E. Wolf, “Principles of Optics”, (1975, Pergamon Press, Oxford) P.514.

    Google Scholar 

  39. D. Velon et al., Optics Commun., 65, 42 (1988).

    Article  Google Scholar 

  40. H. Nakano et al., Optics Commun., 78, 123 (1990).

    Article  Google Scholar 

  41. X. Deng et al, Applied Optics, 25, 377, (1986).

    Article  Google Scholar 

  42. K. Naito, M. Yamanaka, T. Kanabe, M. Nakatsuka, K. Mima, and S. Nakai: Rev. Laser Engineering 18, 652 (1990) (in Japanese).

    Article  Google Scholar 

  43. W. F. Krupke: Fusion Technology 15, 37 (1989).

    Google Scholar 

  44. M. Yamanaka, K. Naito, T. Kanabe, M. Nakatsuka, and S. Nakai: Kakuyugo Kenkyu 62, 79 (1989) (in Japanese).

    Article  Google Scholar 

  45. Spectra Diode Laboratories (private communication).

    Google Scholar 

  46. R. Beach, D. Mundinger, W. Benett, V. Sperry, B. Comaskey, and R. Solarz: Appl. Phys. Lett. 5 6, 2065 (1990).

    Article  Google Scholar 

  47. R. L. Burnham: Laser & Optronics 7, 79 (1989).

    Google Scholar 

  48. W. Koechner: Rev. Laser Engineering 19, 619 (1991).

    Article  Google Scholar 

  49. K. Naito, M. Yamanaka, M. Nakatsuka, T. Kanabe, K. Mima, C. Yamanaka and S. Nakai: Jpn. J. Appl. Phys.} (1991) (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nakai, S. et al. (1992). Laser Fusion — High Density Compression Experiment and Ignition Program with Gekko XII. In: Miley, G.H., Hora, H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3324-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3324-5_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6464-1

  • Online ISBN: 978-1-4615-3324-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics