Skip to main content

Diamond Photovoltaic Cells as a First Wall Material and Energy Conversion System for Inertial Confinement Fusion

  • Chapter
Laser Interaction and Related Plasma Phenomena
  • 168 Accesses

Abstract

Diamond technology is a major area of worldwide semiconductor research. It has been said that the current status of diamond semiconductor technology is similar to that of silicon technology in 1960. Most of the research on diamond is in high quality film production (e.g., purity, and single crystalline versus polycrystalline). A few groups are concentrating on the development of diamond electronic devices. In this endeavor, both p-type and n-type diamond films have been produced. The p-type diamond has excellent properties while the ntype diamond is very high resistance. A primitive p-n junction has been demonstrated. Several groups have demonstrated Schottky diodes including the high bandgap semiconductor group at the University of Missouri-Columbia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • F. P. Boody, “Remote Pumping of Solid-State Lasers Pumped by Remotely-Located Nuclear-Driven Fluorescers,” Ph.D. Dissertation, Nuclear Engineering Program, University of Missouri-Columbia, August 1991.

    Google Scholar 

  • F. P. Boody, and M. A. Prelas, “Very High Average Power Solid-State Lasers Pumped by Remotely-Located Nuclear-Driven Fluorescers”, Advanced Solid-State Lasers, Optical Society of America (To be Published 1991)

    Google Scholar 

  • Brandhorst H., Hickey J., Curtis H., Ralph E. (1975), “Interim Solar Cell Testing Procedures for Terrestrial Applications,” NASATM X-71771.

    Google Scholar 

  • E. J. Caine and E. J. Charlson, “Junction solar cells made with molecular beam glow discharge bombardment, ” J. Elect. Mat’s., 13, (2), 1984.

    Google Scholar 

  • F. G. Celii, P. E. Pehrsson, H. Wang and J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett., 52 (24), June 1988.

    Google Scholar 

  • C. K. Chen, B. Nechay and B. Tsaur, “Ultraviolet, Visible, and Infrared Response of PtSi Schottky Barrier Detectors Operated in the Front Illuminated Mode”, IEEE Trans, on Electron Dev. 38, 1094 (1991).

    Article  Google Scholar 

  • R. F. Davis, Z. Sitar, B. E. Williams, H. S. Kong, H. J. Kim, J. W. Palmour, J. A. Edmond, J. Ryu, J. T. Glass and C. H. Carter, Jr., “Critical Evaluation of the Status of the Areas for Future Research Regarding the Wide Band Gap Semiconductors Diamond, Gallium Nitride and Silicon Carbide”, Materials Science and Engineering B1, 77 (1988).

    Google Scholar 

  • Green M., Blakers A., Shi J., Keller E., Wenham S. (1984), “19.1% Efficient Silicon Solar Cell,” Appl. Phys. Lett. 41, (12).

    Google Scholar 

  • Gu G., Kunze J. F., Boody F. P., and Prelas M. A., “A UF6 fueled Visible Nuclear-Pumped Flashlamp”, Space Nuclear Power Systems 1988, M. S. El-Genk and M. Hoover, editors, Orbit Book Company, 153-160 (1989)

    Google Scholar 

  • B. C. Johnson, J. M. Meese, G. W. Zajac, J. O. Schreiner, J. A. Kaduk and T. H. Fleisch, “Characterization and Growth of SiC Epilayers on Si Substrates”, J. Superlattices and Microstructures 2, 223 (1986).

    Article  Google Scholar 

  • Y. Koide, N. Itoh, K. Itoh, N. Sawaki and I. Akasaki, “Effect of AIN Buffer Layer’ teroepitaxial Growth by Metalorganic Vapor Phase Epitaxy”, Jap. J. Appl. Phys. 27, 1156 (1988).

    Article  Google Scholar 

  • W. F. Kosonocky, F. N. Shallcross, T. S. Villani and J. V. Groppe, “160 x 244 Element PtSi Schottky Barrier IR CCD Image Sensor”, IEEE Trans, on Electron Dev. ED™32,1564 (1985).

    Article  Google Scholar 

  • K. Kurihara, K. Sasaki, M. Kawarada and N. Koshino, “High rate synthesis of diamond by DC plasma jet chemical vapor deposition,” Appl. Phys. Lett., 52 (6), Feb. 1988.

    Google Scholar 

  • Loferski J. (1956), J. Appl. Physics, 27, p 777.

    Article  Google Scholar 

  • M. R. Melloch, S. P. Tobin, T. B. Stellwag, C. Bajgar, A. Keshavarzi, M. S. Lundstrom, K. Emery, “High efficiency GaAs solar cells grown by molecular©beam epitaxy”, J. Vac. Sci. Technology B8, 379(1990).

    Article  Google Scholar 

  • G. H. Miley, Dirent Conversion of Nuclear Radiation Fnergy, American Nuclear Society, Hinsdale (III.) 1970.

    Google Scholar 

  • K. Okano, H. Kiyota, et. al., “Fabrication of a Diamond p-n junction diode using the Chemical Vapour Deposition Technique,” Solid-State Electronics, 34(2), 139 (1991).

    Article  Google Scholar 

  • D. Pappas, Seminar on Fusion Neutrons As an Excitation source For a Xe Excimer Laser, US-Japan Seminar on Laser Fusion, Honolulu Hawaii, August, 1988.

    Google Scholar 

  • M. A. Prelas, “A Potential Fusion Light Bulb For Energy Conversion,” Poster Paper APS Meeting on Plasma Physics October 11-16,1981, Bult. Am. Phys. Son.. 26(7), 1045 (1981); APS Press Release picked up by AP and story reported by various newspapers worldwide (See for example Washington Missourian, Washington, Missouri, Wednesday. January 6, 1982, page 7 or Inside R & D Vol. 10, Number 41, October 14,1981).

    Google Scholar 

  • M. A. Prelas, J. B. Romero, and E. F. Pearson, “A Critical Review of Fusion Systems For Radiolytic Conversion of inorganics to Gaseous Fuels,” Nuclear Technology/Fusion, Vol. 2,143–164 (1982)

    Google Scholar 

  • M. A. Prelas, F. P. Boody, J. F. Kunze, and G. H. Miley, “Nuclear-Driven Flashlamps”, Lasers and Particle Beams, 6(1), 25,(1988).

    Article  Google Scholar 

  • M. A. Prelas, “Synergism in Inertial Confinement Fusion: A Total Direct Energy Conversion Package,” US-Japan Seminar on Laser Fusion, Honolulu Hawaii, August, 1988.

    Google Scholar 

  • M. A. Prelas and E. J. Charlson, “Synergism in Inertial Confinement Fusion: A Total Direct Energy Conversion Package,” Lasers and Particle Beams, Vol. 7(3), 449–466 (Aug 1989);.

    Article  Google Scholar 

  • M. A. Prelas, and F. P. Boody, “Nuclear-Driven Solid-State Lasers for Inertial Confinement Fusion”, Laser Interactions & Related Plasma Phenomena, Vol 9, Plenum Press, New York, 197–210 (1991)

    Chapter  Google Scholar 

  • M. A. Prelas, E. J. Charlson, F. P. Boody, and G. H. Miley, “Advanced Nuclear Energy Conversion Using a Two Step Photon Intermediate Technique”, Prog. In Nuclear Energy, 23(3), pp. 223–240 (1990);.

    Article  Google Scholar 

  • Prelas M. A. and Boody F. P., “A Comparison of Electrical, Fusion-Generated-Ion, and Fission-Generated-Ion ICF Drivers,” Laser Interactions and Related Plasma Phenomena, Vol. 10 (1992).

    Google Scholar 

  • Prinz J. (1982), “Bipolar Transistor Action in Ion Implanted Diamond,” Appl. Phys. Urs., 41 (10)

    Google Scholar 

  • B. Singh, Y. Arie, A. W. Levine and O. R. Mesker, “Effects of filament and reactor wall materials in low-pressure chemical vapor deposition synthesis of diamond,” Appl. Phys. Lett., 52 (6), Feb. 1988.

    Google Scholar 

  • B. Tsaur, C. K. Chen and J. Mattia, “PtSi Schottky Barrier Focal Plane Arrays for Multispectral Imaging in Ultraviolet, Visible, and Infrared Spectral Bands”, IEEE Electron Device Lett. II, 162 (1990).

    Article  Google Scholar 

  • Wallace C. B., BDM Corp., Albuquerque, NM, Personal Communication, August 1991.

    Google Scholar 

  • D. E. Wessol, M. A. Prelas, B. J. Merrill, and T. Speziale, “Feasibility Study of a Nuclear Driven O2(1Δ) Generator to Power an 18 MW Average Power Iodine Laser for Inertial Confinement Fusion,” Laser Interactions and Related Plasma Phenomena, Vol. 8, Plenum Press, New ork (1988).

    Google Scholar 

  • Wysocki J., Rappaport P. (1960), J. Appl. Physics, 31, p.571.

    Article  Google Scholar 

  • H. K. Yasuda, Cascade Arc Plasma Torch, Industrial Contract, 1988-1989.

    Google Scholar 

  • W. M. Yim, E. J. Stofko, P. J. Zanzucchi, H. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AIN and its optical band gap”, J. Appl. Phys. 44ff, 292 (1973).

    Article  Google Scholar 

  • S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda, and A. Itoh, “Reactive molecular beam epitaxy of aluminium nitride”, J. Vac. Sci. Technol., 16(4), 990 (1979).

    Article  Google Scholar 

  • S. Yoshida, S. Misawa, and S. Gonda, “Properties of AI-xGa 1-XN films prepared by reactive molecular beam epitaxy”, J. Appl. Phys. 53, 6844 (1982).

    Article  Google Scholar 

  • G. Zhao, C. H. Chao, E. G. Charlson, E. M. Charlson, J. Meese, G. Popovica, M. Prelas, T. Stacy, “Silver Diamond Schottky Diodes Formed on Boron Doped HFCVD Grown Diamond,” Thrid Annual Diamond Technology Workshop, Organized by Wayne State University, March 17-19,1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prelas, M.A. (1992). Diamond Photovoltaic Cells as a First Wall Material and Energy Conversion System for Inertial Confinement Fusion. In: Miley, G.H., Hora, H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3324-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3324-5_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6464-1

  • Online ISBN: 978-1-4615-3324-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics