Skip to main content

Metabolism of Ethanol

  • Chapter

Abstract

Ethanol is not only produced by yeast but can also be found in mammals in trace amounts (McManus et al., 1966). Bacterial fermentation in the gut is one way in which it is produced (Krebs and Perkins, 1970). How-ever, it is primarily an exogenous compound that is readily absorbed from the gastrointestinal tract. Only 2-10% of ethanol absorbed is eliminated through the kidneys and lungs; the rest is oxidized in the body, principally in the liver. The rate of ethanol removal from the blood is, indeed, remarkably decreased or halted by hepatectomy or procedures damaging the liver (Thompson, 1956). Moreover, the predominant role of liver for ethanol metabolism was shown directly in individuals with portacaval shunts undergoing hepatic vein catheterization (Winkler et al., 1969). Extrahepatic metabolism of ethanol is relatively small (Forsander and Raiha Niels, 1960; Larsen, 1959), except for the stomach (vide infra.) This relative organ specificity probably explains why, despite the existence of intracellular mechanisms to maintain homeostasis, ethanol disposal produces striking metabolic imbalances in the liver. These effects are aggravated by the lack of a feedback mechanism to adjust the rate of ethanol oxidation to the metabolic state of the hepatocyte and the inability of ethanol, unlike other major sources of calories, to be stored in the liver or to be metabolized or stored to a significant degree in peripheral tissues (Table 1.1). The hepatocyte contains three main pathways for ethanol metabolism, each located in a different subcellular compartment: the alcohol dehydrogenase pathway of the cytosol (or soluble frac-tion of the cell), the microsomal ethanol-oxidizing sys-tem located in the endoplasmic reticulum, and catalase located in the peroxisomes (Fig. 1.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Admirand, W. H., Cronholm, T., and Sjövall, J.: Reduction of dehydroepiandrosterone sulfate in the liver during ethanol metabolism. Biochim. Biophys. Acta 202:343–348, 1970.

    Google Scholar 

  • Alderman, J., Takagi, T., and Lieber, C. S.: Ethanol metabolizing pathways in deermice: Estimation of flux calculated from isotope effects. J. Biol. Chem. 262:7497–7503, 1987.

    Google Scholar 

  • Alderman, J. A., Kato, S., and Lieber, C. S.: Characteristics of butanol metabolism in alcohol dehydrogenase-deficient deer-mice. Biochem. J. 257:615–619, 1989a.

    Google Scholar 

  • Alderman, J., Kato, S., and Lieber, C. S.: The microsomal ethanol oxidizing system mediates metabolic tolerance to ethanol in deermice lacking alcohol dehydrogenase. Arch. Biochem. Biophys. 271:33–39, 1989b.

    Google Scholar 

  • Alobaidi, T. A. A., Hill, D. W, and Payne, J. P: Significance of variation in blood: Breath partition coefficient of alcohol. Br. Med. J. 2:1479–1481, 1976.

    Google Scholar 

  • Ammon, H. P. T., and Estler, C. J.: Influence of acute and chronic administration of alcohol on carbohydrate breakdown and energy metabolism in the liver. Nature 216:158–159, 1967.

    Google Scholar 

  • Anton, A. H.: Ethanol and urinary catecholamines in man. Clin. Pharmacol. Ther. 6: 462–469, 1965.

    Google Scholar 

  • Bahr-Lindström, H. von, Hoog, J.-O., Heden, L.-O., Kaiser, R., Fleetwood, L., Larsson, K., Lake, M., Holmquist, B., Holmgren, A., and Hempel, T.: cDNA and protein structure for the a subunit of human liver alcohol dehydrogenase. Biochemistry 25:2465–2470, 1986.

    Google Scholar 

  • Bartlett, G. R.: Does catalase participate in the physiologic oxida-tion of alcohols? Q. J. Stud. Alcohol 13:583–589, 1952.

    Google Scholar 

  • Bendtsen, E, Henriksen, J. H., Widding, A., and Winkler, K.:Hepatic venous oxygen content in alcoholic cirrhosis and non-cirrhotic alcoholic liver disease. Liver 7:176–181, 1987.

    Google Scholar 

  • Bennion, L. J., and Li, T.-K.: Alcohol metabolism in American Indians and whites. Lack of racial differences in metabolic rate and liver alcohol dehydrogenase. N. Engl. J. Med. 294:9–13, 1976.

    Google Scholar 

  • Bernstein, J., Videla, L., and Israel, Y.: Metabolic alterations produced in liver by chronic ethanol administration. Changes related to energetic parameters of the cell. Biochem. J. 134: 515–522, 1973.

    Google Scholar 

  • Bernstein, J., Videla, L., and Israel, Y.: Hormonal influences in the development of the hypermetabolic state of the liver produced by chronic administration of ethanol. J. Pharmacol. Exp. Ther. 192:583–591, 1975.

    Google Scholar 

  • Berres, H. H., Goslar, H. G., and Jaeger, K. H.: Morphologische und histochemische Veranderungen in der Leber nach einmaliger Alkoholbelastung und nach Versuchen ihrer. Acta Histochem. 35:173–185, 1970.

    Google Scholar 

  • Berry, M. N.: Effects of microsomal-metabolized drugs (MMD) on oxidation of ethanol, sorbitol or glycerol in rat.Clin. Res. 19:471, 1971 (abstract).

    Google Scholar 

  • Bjorkhem, I.: On the role of alcohol dehydrogenase in w-oxidation of fatty acids. Eur. J. Biochem. 30:441–451, 1972.

    Google Scholar 

  • Bode, Ch., Goebell, H., and Stahler, M.: Anderungen der Alkoholdehydrogenase Aktivität in der Rattenleber durch Eiweiss-mange! und Athanol. Z. Gesampte Exp. Med. 152:111–124, 1970a.

    Google Scholar 

  • Bode, Ch., Bode, C., Goebell, H., Godbersen, H., and Stroh-meyer, G.: On the pathogenesis of ethanol-induced lipid accumulation in the liver. II. Effect of stimulation of the a-glycerophosphate cycle on metabolic changes in the liver caused by ethanol. Horm. Metab. Res. 2:282–286, 1970b.

    Google Scholar 

  • Bode, Ch., Buchwald, B., and Goebell, H.: Inhibition of ethanol breakdown due to protein deficiency in man. Germ. Med. 1:149–151, 1971.

    Google Scholar 

  • Bode, J. C., and Thiele, D.: Hemmung des Athanolabbaus beim Menschen durch Fasten: Reversibilität durch Fructose-Infusion. Dtsch. Med. Wochensch. 100:1849–1851, 1975.

    Google Scholar 

  • Bode, J. C., Zelder, O., Rumpelt, H. J., and Wittkamp, U.: Depletion of liver adenosine phosphates and metabolic effects of intravenous infusion of fructose or sorbitol in man and in the rat. Eur. J. Clin. Invest. 3:436–441, 1973a.

    Google Scholar 

  • Bode, J. C., Bode, C., Rumpelt, H. J., and Zelder, O.: Loss of hepatic adenosine phosphates and metabolic consequences following fructose or sorbitol administration in man and in the rat. In: Regulation of Hepatic Metabolism, F. Lundquist and N. Tygstrup (eds.), New York, Academic Press, pp. 267–284, 1973b.

    Google Scholar 

  • Bosron, W. F., and Li, T-K.: Catalytic properties of human liver alcohol dehydrogenase isoenzymes. Enzyme 37:19–28, 1987.

    Google Scholar 

  • Bosron, W. F, Li, T-K., Dafeldecker, W. P, and Vallee, B. L.: Human liver Tr-alcohol dehydrogenase: kinetic and molecular properties. Biochemistry 18:1101–1105, 1979.

    Google Scholar 

  • Bosron, W F., Magnes, L. J., and Li, T-K.: Human liver alcohol dehydrogenase: ADH Indianapolis results from genetic poly-morphism at the ADH2 gene locus. Biochem. Genet. 21:735–744,1983.

    Google Scholar 

  • Boveris, A., Oshino, H., and Chance, B.: The cellular production of hydrogen peroxide. Biochem. J. 128:617–630, 1972.

    Google Scholar 

  • Brauer, R. W, Holloway, R. J., Krebs, J. S., Leong, G. F., and Carroll, H. W: The liver in hypothermia. Ann. N.Y. Acad. Sci. 80:395–423, 1959.

    Google Scholar 

  • Bredfeldt, J. E., Riley, E. M., and Groszmann, R. J.: Compensa-tory mechanisms in response to an elevated hepatic oxygen consumption in chronically ethanol-fed rats. Am. J. Physiol. 248:G507–G511, 1985.

    Google Scholar 

  • Brighenti, L., and Pancaldi, G.: Effetto della somministrazione di alcool etilico su alcune attivita enzimatiche del fegato di ratto. Soc. Ital. Biol. Spermentale 46:1–5, 1970.

    Google Scholar 

  • Brown, S. S., Forrest, J. A. H., and Roscoe, P: A controlled trial of fructose in the treatment of acute alcoholic intoxication. Lancet 2:898–900, 1972.

    Google Scholar 

  • Bucher, T., and Klingenberg, M.: Wege des Wasserstoffs in der lebendigen Organisation. Angew. Chem. 70:552–570, 1958.

    Google Scholar 

  • Buehler, R., Hess, M., and von Wartburg, J.-P: Immuno-histochemical localization of human liver alcohol dehydrogenase in liver tissue, cultured fibroblasts and hela cells. Am. J. Pathol. 108:89–99, 1982.

    Google Scholar 

  • Burnett, K. G., and Felder, M. R.: Ethanol metabolism in per-omyscus genetically deficient in alcohol dehydrogenase. Bio-chem. Pharmacol. 28:1–8, 1980.

    Google Scholar 

  • Caballeria, J., Baraona, E., and Lieber, C. S.: The contribution of the stomach to ethanol oxidation in the rat. Life Sci. 41:1021–1027, 1987.

    Google Scholar 

  • Caballeria, J., Baraona, E., Rodmilans, M., and Lieber, C. S.: Effects of cimetidine on gastric alcohol dehydrogenase active-ity and blood ethanol levels. Gastroenterology 96:388–392, 1989a.

    Google Scholar 

  • Caballeria, J., Frezza, M., Hernandez, R., DiPadova, C., Korsten, M. A., Baraona, E., and Lieber, C. S.: The gastric origin of the first pass metabolism of ethanol in man: effect of gastric-tomy. Gastroenterology 97:1205–1209, 1989b.

    Google Scholar 

  • Caballeria, J., Baraona, E., Rodamilans, M., and Lieber, C. S.: Effects of cimetidine on gastric alcohol dehydrogenase active-ity and blood ethanol levels (Letter to the Editor) Gastro-enterology 96:1067–1068, 1989c.

    Google Scholar 

  • Carmichael, F. J., Saldivia, V., Israel, Y., McKaigney, J. P, and Orrego, H.: Ethanol-induced increase in portal hepatic blood flow: Interference by anesthetic agents. Hepatology 7:89–94, 1987.

    Google Scholar 

  • Carmichael, F. J., Saldivida, V., Varghese, G. A., Israel, Y., and Orrego, H.: Ethanol-induced increase in portal blood flow role of acetate and A1- and A2-adenosine receptors. Am. J. Physiol. 225:G417–G423, 1988.

    Google Scholar 

  • Carter, E. A., and Isselbacher, K. J.: The role of microsomes in the hepatic metabolism of ethanol. Ann. N.Y. Acad. Sci. 179: 282–294, 1971.

    Google Scholar 

  • Carulli, N., Manenti, F., Gallo, M., and Salviolli, G. F.: Alcohol-drugs interaction in man: Alcohol and tolbutamide. Eur. J. Clin. Invest. 1:421–424, 1971.

    Google Scholar 

  • Castenfors, H., Hultman, E., and Josephson, B.: Effect of intra-venous infusions of ethyl alcohol on estimated hepatic blood flow in man. J. Clin. Invest. 39:776–781, 1960.

    Google Scholar 

  • Cederbaum, A. I., Pietrusko, R., Hempel, J. Becker, F. F, and Rubin, E.: Characterization of a nonhepatic alcoholic dehy-drogenase from rat hepatocellular carcinoma and stomach. Arch. Biochem. Biophys. 171:348–360, 1975.

    Google Scholar 

  • Cederbaum, A. I., Dicker, E., and Rubin, E.: Transfer and reoxi-dation in reducing equivalents as the rate-limiting steps in the oxidation of ethanol by liver cells isolated from fed and fasted rats. Arch. Biochem. Biophys. 183:638–646, 1977a.

    Google Scholar 

  • Cederbaum, A. I., Dicker, E., Rubin, E., and Cohen, G.: The effect of dimethylsulfoxide and other hydroxyl radical scavengers on the oxidation of ethanol by rat liver microsomes. Biochem. Biophys. Res. Commun. 78:1254–1262, 1977b.

    Google Scholar 

  • Cederbaum, A. I., Dicker, E., Lieber, C. S., and Rubin, E: Factors contributing to the adaptive increase in ethanol metabolism due to chronic consumption of ethanol. Alcoholism: Clin. Exp. Res. 1:27–31, 1977c.

    Google Scholar 

  • Chance, B.: An intermediate compound in the catalase-hydrogen reaction. Acta Chem. Scand. 1:236–267, 1947.

    Google Scholar 

  • Chance, B., and Oshino, N.: Kinetics and mechanisms of catalase in peroxisomes of the mitochondrial fraction. Biochem. J. 122:225–233, 1971.

    Google Scholar 

  • Chappell, J. H.: Systems used for the transport of substrates into mitochondria. Br. Med. Bull. 24:150–157, 1968.

    Google Scholar 

  • Cohen, B. S., and Estabrook, R. W: Microsomal electron transport reactions. III. Cooperative interactions between reduced diphosphopyridine nucleotide and reduced triphosphopyridine nucleotide linked reaction. Arch. Biochem. Biophys. 143:54–65, 1971.

    Google Scholar 

  • Cohen, G., Sinet, P. M., and Heikkila, R. E.: Ethanol oxidation by catalase in rat brain in vivo. In: Biological Approach to Alcoholism (C. S. Lieber, ed.), Washington, D.C., Research Monograph-11, DDHS Publication No. (ADM) 83–1261, Su-perintendent of Documents, U.S. Government Printing Of-fice, pp. 311–315, 1983.

    Google Scholar 

  • Cole-Harding, S., and Wilson, J. R.: Ethanol metabolism in men and women. J. Stud. Alcohol 48:380–387, 1987.

    Google Scholar 

  • Cornai, K., and Gaylor, J. L.: Existence and separation of three forms of cytochrome P-450 from rat liver microsomes. J. Biol. Chem. 248:4947–4955, 1973.

    Google Scholar 

  • Conney, A. H.: Pharmacological implications of microsomal en-zyme induction. Pharmacol. Rev. 19:317–366, 1967.

    Google Scholar 

  • Cortot, A., Jobin, G., Ducrot, F., Aymes, C., Giraudeaux, V., and Modigliani, R.: Gastric emptying and gastrointestinal absorption of alcohol ingested with a meal. Dig. Dis. Sci. 31:343–348,1986.

    Google Scholar 

  • Couzigou, P, Fleury, B., Bourjac, M., Betbeder, A. U., Vincon, G., Richard-Molard, B., Albin, H., Amouretti, M., and Beraud, C.: Pharmacocinétique de l’alcool après perfusion intraveineuse de trois heures avec et sans cimétidine chez dix sujets sains non alcooliques. Gastroenterol. Clin. Biol. 8: 103–108,1984.

    Google Scholar 

  • Cronholm, T, and Fors, C.: Transfer of the 1-pro-R and the 1-pro-S hydrogen atoms of ethanol in metabolic reduction in vivo Eur. J. Biochem. 70:83–87, 1976.

    Google Scholar 

  • Cronholtn, T, and Sjövall, J.: Effect of ethanol metabolism on redox state of steroid sulphates in man. Eur. J. Biochem. 13:124–131, 1970.

    Google Scholar 

  • Crow, K. E., Cornell, N. W, and Veech, R. L.: The rate of ethanol metabolism in isolated rat hepatocytes. Alcoholism: Clin. Exp. Res. 1:43–47, 1977.

    Google Scholar 

  • Crow, K. E., Cornell, N. W, and Veech, R. L.: Lactate-stimulated ethanol oxidation in isolated rat hepatocytes. Biochem. J. 172:29–36, 1978.

    Google Scholar 

  • Dacruz, A. G., Correia, J. P., and Menezes, L.: Ethanol metabolism in liver cirrhosis and chronic alcoholism. Acta Hepato-Gastroenterol. 22:369–374, 1975.

    Google Scholar 

  • Damgaard, S. E., Sestoft, L., Lundquist, F., and Tygstrup, N.: The interrelationship between fructose and ethanol metabolism in the isolated perfused pig liver. Acta Med. Scam. 542:(Suppl.) 131–140, 1972.

    Google Scholar 

  • Damgaard, S. E., Lundquist, F., Tonnesen, K., Hansen, F V, and Sestoft, D.: Metabolism of ethanol and fructose in the isolated perfused pig liver. Eur. J. Biochem. 33:87–97, 1973.

    Google Scholar 

  • de Saint-Blanquat, G., Fritsch, P., and Derache, R.: Activité alcool-déhydrogénasique de la muqueuse gastrique sous l’effet de différents traitements éthanoliques chez le rat. Pathol. Biol. 10:249–253, 1972.

    Google Scholar 

  • DiPadova, C., Worner, T. M., Julkunen, R. J. K., and Lieber, C. S.: Effects of fasting and chronic alcohol consumption on the first pass metabolism of ethanol. Gastroenterology 92: 1169–1173,1987.

    Google Scholar 

  • DiPadova, C., Frezza, M., and Lieber, C. S.: Gastric metabolism of ethanol: implications for its bioavailability in men and women. In: Biomedical and Social Aspects of Alcohol and Alcoholism (K. Kuriyaiha, A. Takada, and H. Ishii, eds.), Amsterdam: Elsevier Science Publishers, B. V, pp. 81–84, 1988.

    Google Scholar 

  • Dobrilla, G., de Pretis, G., Piazzi, L., Chilovi, R., Coberiato, M., Valentini, M., Pastorino, A., and Vallaperta, P: Is ethanol metabolism affected by oral administration of cimetidine and ranitidine at therapeutic doses? Acta Hepato-Gastroenterol. 31:35–37, 1984.

    Google Scholar 

  • Domschke, S., Domschke, W, and Lieber, C. S.: Hepatic redox state: Attenuation of the acute effects of ethanol induced by chronic ethanol consumption. Life Sci. 15:1327–1334, 1974.

    Google Scholar 

  • Dow, J., Krasner, N., and Goldberg, A.: Relation between hepatic alcohol dehydrogenase activity and the ascorbic acid in leucocytes of patients with liver disease. Clin. Sci. Mol. Med. 49:603–608, 1975.

    Google Scholar 

  • Duester, G., Smith, M., Bilanchone, V., and Hatfield, G. W: Molecular analysis of the human class I alcohol dehydroge-nase gene family and nucleotide sequence of the gene encoding the 13 subunit. J. Biol. Chem. 261:2027–2033, 1986.

    Google Scholar 

  • Edwards, D. J., Babiak, L. M., and Beckman, H. B.: The. effect of a single oral dose of ethanol on hepatic blood flow in man. Eur. J. Clin. Pharmacol. 32:481–484, 1987.

    Google Scholar 

  • Edwards, J. A., and Price-Evans, D. A.: Ethanol metabolism in subjects possessing typical and atypical liver alcohol dehy-drogenase. Clin. Pharmacol. Ther. 8:824–829, 1967.

    Google Scholar 

  • Ekström, G., Cronholm, T, and Ingelman-Sundberg, M.: Hydroxyl-radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rats. Biochem. J. 233: 755–761, 1986.

    Google Scholar 

  • Ekström, G., Norsten, C., Cronholm, T., and Ingelman-Sundberg, M.: Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of steroselectivity. Biochemistry 26:7346–7354, 1987.

    Google Scholar 

  • Eriksson, C. J. P, Lindros, K. O., and Forsander, O. A.: 2,4-Dinitrophenol-induced increase in ethanol and acetaldehyde oxidation in the perfused rat liver. Biochem. Pharmacol. 23: 2193–2195, 1974.

    Google Scholar 

  • Ewing, J. A., Rouse, B. A., and Pellizzari, E. D.: Alcohol sensitivity and ethnic background. Am. J. Psychiatry 131: 206–210,1974.

    Google Scholar 

  • Fabry, T. L., and Lieber, C. S.: The photochemical action spectrum of the microsomal ethanol oxidizing system. Alcohol-ism: Clin. Exp. Res. 3:219–222, 1979.

    Google Scholar 

  • Farinati, F., Zhou, Z. C., Bellah, J., Lieber, C. S., and Garro, A. J.: Effect of chronic ethanol consumption on activation of nitroso-pyrrolidine to a mutagen by rat upper alimentary tract, lung and hepatic tissue. Drug. Metab. Dispos. 13:210–214, 1985.

    Google Scholar 

  • Feely, J., and Wood, A. J. J.: Effects of cimetidine on the elimina-tion actions of ethanol. J.A.M.A. 247:2819–2821, 1982.

    Google Scholar 

  • Feinman, L., Baraona, E., Matsuzaki, S., Korsten, M., and Lie-ber, C. S.: Concentration dependence of ethanol metabolism in vivo in rats and man. Alcoholism: Clin. Exp. Res. 2:381–385,1978.

    Google Scholar 

  • Fenna, D., Mix, L., Schaefer, O., and Gilbert, J. A. L.: Ethanol metabolism in various racial groups. Can. Med. Assoc. J. 105:472–475, 1971.

    Google Scholar 

  • Feytmans,.E., and Leighton, F.: Effects of pyrazole and 3-amino-1,2, or 4-triazole on methanol and ethanol metabolism by the rat. Biochem. Pharmacol. 22:349–360, 1973.

    Google Scholar 

  • Fischer, H. D., and Oelssner, W: Der Einfluss von Barbituraten auf die Alkoholelimination bei Mausen. Kiln. Wochenschr. 39: 1265, 1961.

    Google Scholar 

  • Forsander, O. A., and Raiha Niels, C. R.: Metabolites produced in the liver during alcohol oxidation. J. Biol. Chem. 235:34–36, 1960.

    Google Scholar 

  • French, S. W: Effect of acute and chronic ethanol ingestion in rat liver ATP Proc. Soc. Exp. Biol. Med. 121:681–685, 1966.

    Google Scholar 

  • Frezza, M., Di Padova, C., Pozzato, G., Terpin, M., Baraona, E., and Lieber, C. S.: High blood alcohol levels in women: Role of decreased gastric alcohol dehydrogenase activity and first pass metabolism. N. Engl. J. Med. 322:95–99, 1990.

    Google Scholar 

  • Fukui, M., and Wakasugi, C.: Liver alcohol dehydrogenase in a Japanese population. Jpn. J. Legal Med. 26:46–51, 1972.

    Google Scholar 

  • Gale, C. C.: Neuroendocrine aspects of thermoregulation. Annu. Rev. Physiol. 35:391–430, 1973.

    Google Scholar 

  • Gentry, R. T, Baraona, E., and Lieber, C. S.: Chronic alcohol consumption accelerates gastric emptying and increases peak blood ethanol in rats. Alcoholism: Clin. Exp. Res. (abstract) 14:291, 1990.

    Google Scholar 

  • Gillette, J. R., Brodie, B. B., and La Du, B. N.: The oxidation of drugs by liver microsomes: On the role of TPNH and oxygen. J. Pharmacol. Exp. Ther. 119:532–540, 1957.

    Google Scholar 

  • Glassman, A. B., Bennett, C. E., and Randall, C. L.: Effects of ethyl alcohol on human peripheral lymphocytes. Arch. Pa-thol. Lab. Med. 109:540–542, 1985.

    Google Scholar 

  • Goodman, D. W, and Deykin, D.: Fatty acid ethyl ester formation during ethanol metabolism in vivo. Proc. Soc. Exp. Biol. Med. 113:65–67, 1963.

    Google Scholar 

  • Goodwin, D. W: Is alcoholism hereditary? A review and critique. Arch. Gen. Psychiatry 25:545–549, 1971.

    Google Scholar 

  • Goodwin, D. W, Schulsinger, F, Knop, J., Mednick, S., and Guze, S. B.: Psychopathology in adopted and nonadopted daughters of alcoholics. Arch. Gen. Psychiatry 34:1005–1009, 1977.

    Google Scholar 

  • Gordon, E. R.: The utilization of ethanol by the isolated perfused rat liver. Can. J. Physiol. Pharmacol. 46:609–616, 1968.

    Google Scholar 

  • Gordon, E. R.: Mitochondrial functions in an ethanol-induced fatty liver. J. Biol. Chem. 248:8271–8280, 1973.

    Google Scholar 

  • Gordon, E. R.: ATP metabolism in an ethanol induced fatty liver. Alcoholism: Clin. Exp. Res. 1:21–25, 1977.

    Google Scholar 

  • Greenberger, N. J., Cohen, R. B., and Isselbacher, K. J.: The effect of chronic ethanol administration on liver alcohol dehydroge-nase activity in the rat. Lab. Invest. 14:264–271, 1965.

    Google Scholar 

  • Grunnet, N.: Oxidation of extramitochondria NADPH by rat liver mitochondria: Possible role of acyl-CoA elongation enzymes. Biochem. Biophys. Res. Commun. 41:909–917, 1970.

    Google Scholar 

  • Grunnet, N., and Thieden, H. I. D.: The effect of ethanol concentrations upon in vivo metabolite levels of rat liver. Life Sci. (Part II) 11:983, 1972.

    Google Scholar 

  • Grunnet, N., Quistorff, B., and Thieden, H. I.D.: Rate-limiting factors in ethanol concentration, fructose, pyruvate and pyra-zole. Eur. J. Biochem. 40:275–282, 1973.

    Google Scholar 

  • Guynn, R. W, and Pieklik, J. R.: Dependence on dose of the acute effects of ethanol on liver metabolism in vivo. J. Clin. Invest. 56:1411–1419, 1975.

    Google Scholar 

  • Halsted, C. H., Robles, E. A., and Mezey, E.: Distribution of ethanol in the human gastrointestinal tract. Am. J. Clin. Nutr. 26:831–834, 1973.

    Google Scholar 

  • Handler, J. A., and Thurman, R. G.: Fatty acid-dependent ethanol metabolism. Biochem. Biophys. Res. Commun. 133:44–51, 1985.

    Google Scholar 

  • Handler, J. A., and Thurman, R. G.: Hepatic ethanol metabolism is mediated predominantly by catalase-H2O2 in the fasted state. FEBS Lett. 238:139–141, 1988.

    Google Scholar 

  • Handler, J. A., Bradford, B. U., Glassman, E. B., Forman, D. T., and Thurman, R. G.: Inhibition of catalase-dependent ethanol metabolism in alcohol dehydrogenase-deficient deermice by fructose. Biochem. J. 284:415–421, 1987.

    Google Scholar 

  • Handler, J. A., Koop, D. R., Coon, M. J., Takei, Y., and Thurman, R. G.: Identification of P-450ALC in microsomes from alcohol dehydrogenase-deficient deermice: contribution to ethanol elimination in vivo. Arch. Biochem. Biophys. 264:114–124, 1988.

    Google Scholar 

  • Hanna, J. M.: Metabolic responses of Chinese, Japanese and Europeans to alcohol. Alcoholism: Clin. Exp. Res. 2:89–92, 1978.

    Google Scholar 

  • Harada, S., Agarwal, D. P, and Goedde, H. W: Human liver alcohol dehydrogenase isoenzyme variations: Improved sep-aration methods using prolonged high voltage starch gel electrophoresis and isoelectric focusing. Hum. Genet. 40: 215–220, 1978.

    Google Scholar 

  • Harrison, T. S.: Adrenal medullary and thyroid relationships. Physiol. Rev. 44:262–285, 1964.

    Google Scholar 

  • Hassinen, I.: Hydrogen transfer into mitochondria in the metabo-lism of ethanol. Ann. Med. Exp. Biol. Fenn 45:35–46, 1967.

    Google Scholar 

  • Hasumura, Y., Teschke, R., and Lieber, C. S.: Hepatic microsomal ethanol oxidizing system (MEOS): Dissociation from re-duced nicotinamide adenine dinucleotide phosphate-oxidase and possible role of form 1 of cytochrome P-450. J. Phar-macol. Exp. Ther. 194:469–474, 1975.

    Google Scholar 

  • Hawkins, R. D., and Kalant, H.: The metabolism of ethanol and its metabolic effects. Pharmacol. Rev. 24:67–157, 1972.

    Google Scholar 

  • Hawkins, R. D., Kalant, H., and Khanna, J. M.: Effects of chronic intake of ethanol on rate of ethanol metabolism. Can. J. Physiol. Pharmacol. 44:241–257, 1966.

    Google Scholar 

  • Hempel, J. D., and Pietruszko, R.: Human stomach alcohol dehydrogenase: Isoenzyme composition and catalytic properties. Alcoholism: Clin. Exp. Res. 3:95–98, 1979.

    Google Scholar 

  • Hernandez-Munoz, R., Caballeria, J., Baraona, E., Uppal, R., Greenstein, R., and Lieber, C. S.: Human gastric alcohol dehydrogenase: Its inhibition by H2-receptor antagonists and its effect on bioavailability of ethanol. Alcoholism: Clin. Exp. Res. 14:946–950, 1990.

    Google Scholar 

  • Hildebrandt, A. G., and Speck, M.: Investigations on metabolism of ethanol in rat liver microsomes. Arch. Pharmacol. Suppl. 277:165, 1973.

    Google Scholar 

  • Hildebrandt, A. G., Speck, M., and Roots, I.: The effects of substrates of mixed function oxidase on ethanol oxidation in rat liver microsomes. Naunyn-Schmiedebergs Arch. Phar-macol. 281:371–382, 1974.

    Google Scholar 

  • Hillbom, M. E.: Thyroid state and voluntary alcohol consumption of albino rats. Acta Pharmacol. Toxicol. 29:95–105, 1971.

    Google Scholar 

  • Hillbom, M. E., and Pikkarainen, P H.: Liver alcohol and sorbitol dehydrogenase activities in hypo-and hyperthyroid rats. Biochem. Pharmacol. 19:2097–2103, 1970.

    Google Scholar 

  • Himms-Hagen, J.: Sympathetic regulation of metabolism. Phar-macol. Rev. 19:367–461, 1967.

    Google Scholar 

  • Holmes, R. S., and VandeBerg, J. L.: Baboon alcohol dehydrogenase isozymes: phenotypic changes in liver following chronic consumption of alcohol. In: Current Topics in Biological and Medical Research,Vol. 16: Agriculture, Physiology, and Medicine, New York, Alan R. Liss, pp. 1–20, 1987.

    Google Scholar 

  • Holmes, R., Courtney, Y. R., and VandeBerg, J. L.: Alcohol dehydrogenase isoenzymes in baboons: tissue distribution, catalytic, properties and variant phenotypes in liver, kidney stomach, and testis. Alcoholism: Clin. Exp. Res. 10:623–630, 1986.

    Google Scholar 

  • Holzer, H., and Schneider, S.: Zum Mechanismus der Beeinflussung der Alkohol-Oxydation in der Leber durch Fructose. Klin. Wochenschr. 33:1006–1009, 1955.

    Google Scholar 

  • Horn, R. S., and Manthei, R. W: Ethanol metabolism in chronic protein deficiency. J. Pharmacol. Exp. Ther. 147:385–390, 1965.

    Google Scholar 

  • Hosein, E. A., and Bexton, B.: Protective action of carnitine on liver lipid metabolism after ethanol administration to rats. Biochem. Pharmacol. 14:1859–1863, 1975.

    Google Scholar 

  • Hultman, E., Nilsson, L. H., and Sahlin, K.: Adenine nucleotide content of human liver. Scand. J. Clin. Lab. Invest. 35:245–251,1975.

    Google Scholar 

  • Hyvärinen, J., Leakso, M., Sippel, H., Roine, R., Fluopaniemi, T., Leinonen, L., and Flytomen, V.: Alcohol detoxification accelerated by oxygenated drinking water. Life Sci. 22:553–560, 1978.

    Google Scholar 

  • Iber, F. L.: Evaluation of an oral solution to accelerate alcoholism detoxification. Alcoholism: Clin. Exp. Res. 11:305–308, 1987.

    Google Scholar 

  • Inatomi, N., Kato, S., Ito, D., and Lieber, C. S.: Role of peroxi-somal fatty acid beta-oxidation in ethanol metabolism. Bio-chem. Biophys. Res. Commun. 163:418–423, 1989.

    Google Scholar 

  • Inatomi, N., Ito, I., and Lieber, C. S.: Ethanol oxidation by deerntice mitochondria under physiologic conditions. Alco-holism: Clin. Exp. Res. 14:130–133, 1990.

    Google Scholar 

  • Ingelman-Sundberg, M., and Johansson, I.: Mechanisms of hy-droxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cyto-chromes P-450. J. Biol. Chem. 259: 6447–6458, 1984.

    Google Scholar 

  • Iseri, O. A., Gottlieb, L. S., and Lieber, C. S.: The ultrastructure of ethanol-induced fatty liver. Fed. Proc. 23:579, 1964 (ab-stract).

    Google Scholar 

  • Iseri, O. A., Lieber, C. S., and Gottlieb, L. S.: The ultrastructure of fatty liver induced by prolonged ethanol ingestion. Am. J. Pathol. 48:535–555, 1966.

    Google Scholar 

  • Ishii, H., Joly, J.-G., and Lieber, C. S.: Effect of ethanol on the amount and enzyme activities of hepatic rough and smooth microsomal membranes., Biochim. Biophys. Acta 291:411–420,1973.

    Google Scholar 

  • Ismail-Beigi, F., and Edelman, I.S.: Mechanism of thyroid calori-genesis: Role of active sodium transport. Proc. Natl. Acad. Sci. U.S.A. 67:1071–1078, 1970.

    Google Scholar 

  • Ismail-Beigi, F., and Edelman, I.S.: The mechanism of the calori-genic action of thyroid hormone. J. Gen. Physiol. 57:710–722, 1971.

    Google Scholar 

  • Israel, Y., Videla, L., MacDonald, A., and Bernstein, J.: Meta-bolic alterations produced in the liver by chronic ethanol administration. Comparison between the effects produced by ethanol and by thyroid hormones. Biochem. J. 134:523–529, 1973.

    Google Scholar 

  • Israel, Y., Videla, L., Fernandes-Videla, V., and Bernstein, J.: Effects of chronic ethanol treatment and thyroxine adminis-tration on ethanol metabolism and liver oxidative capacity. J. Pharmacol. Exp. Ther. 192:565–574, 1975.

    Google Scholar 

  • Jauhonen, P., Baraona, E., Miyakawa, H., and Lieber, C. S.: Mechanism for selective perivenular hepatotoxicity of etha-nol. Alcoholism: Clin. Exp. Res. 6:350–357, 1982.

    Google Scholar 

  • Jian, R., Cortot, A., Ducrot, F., Jobin, G., Chaybialle, J. A., and Modigliani, R.: Effect of ethanol ingestion and postprandial gastric emptying and secretion, biliopancr eatic secretions, and duodenal absorption in man. Dig. Dis. Sci. 31:604–614, 1986.

    Google Scholar 

  • Joly, J. G., Ishii, H., and Lieber, C. S.: Microsomal cyanide-binding cytochrome: Its role in hepatic ethanol oxidation. Gastroenterology 62:174, 1972 (abstract).

    Google Scholar 

  • Joly, J. G., Ishii, H., Teschke, R., Hasumura, Y., and Lieber, C. S.: Effect of chronic ethanol feeding on the activities and sub-microsomal distribution of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P-450 reduc-tase and the demethylases for amino-pyrine and ethylmor-phine. Biochem. Pharmacol. 22:1532–1535, 1973.

    Google Scholar 

  • Joly, J. G., Hetu, C., Mavier, P., and Villeneuve, J. P.: Mechanisms of induction of hepatic drug-metabolizing enzymes by etha-nol. I. Limited role of microsomal phospholipids. Biochem. Pharmacol. 25:1995–2001, 1976.

    Google Scholar 

  • Joly, J. G., Villeneuve, J. P., and Mavier, P.: Chronic ethanol administration induces a form of cytochrome P-450 with specific spectral and catalytic properties. Alcoholism: Clin. Exp. Res. 1:17–20, 1977.

    Google Scholar 

  • Jones, B. M., and Paredes, A.: Circadian variation of ethanol metabolism in alcoholics. Br. J. Addict. 69:3–10, 1974.

    Google Scholar 

  • Jörnvall, H., Hempel, J., Vallee, B. L., Bosron, W. F., and Li, T.-K.: Human liver alcohol dehydrogenase: Amino acid substi-tution in the 13202 Oriental isozyme explains functional properties, establishes an active site structure, and parallels mutational exchanges in the yeast enzyme. Proc. Natl. Acad. Sci. USA. 81:3024–3028, 1984.

    Google Scholar 

  • Jörnvall, H., Hoog, J.-O., Bahr-Lindstrom, H., and Vallee, B. L.: Mammalian alcohol dehydrogenases of separate classes: Intermediates between different enzymes and intraclass iso-zymes. Proc. Natl. Acad. Sci. USA. 84:2580–2584, 1987.

    Google Scholar 

  • Julia, P, Farces, J., and Parès, X.: Characterization of three isoenzymes of rat alcohol dehydrogenase. Tissue distribution and physical and enzymatic properties. Eur. J. Biochem. 162:179–189, 1987.

    Google Scholar 

  • Julkunen, R. J. K., DiPadova, C., and Lieber, C. S. First pass metabolism of ethanol—a gastrointestinal barrier against the systemic toxicity of ethanol. Life Sci. 37:567–573, 1985a.

    Google Scholar 

  • Julkunen, R. J. K., Tannenbaum, L., Baraona, E., and Lieber, C. S.: First pass metabolism of ethanol: An important determi-nant of blood levels after alcohol consumption. Alcohol 2: 437–441, 1985b.

    Google Scholar 

  • Kahonen, M. T, Ylikahri, R. H., and Hassinen, I.: Ethanol metabolism in rats treated with ethyl-a-p-chlorophenoxyiso-butyrate (clofibrate). Life Sci. 10 (Part II):661–670, 1971.

    Google Scholar 

  • Kalant, H., Khanna, J. M., and Endrenyi, L., Effect of pyrazole on ethanol metabolism in ethanol-tolerant rats. Can. J. Physiol. Pharmacol. 53:416–422, 1975.

    Google Scholar 

  • Kalant, H., Orrego, H., Israel, Y., Walfish, P. C., Rankin, J., and Findlay, J.: Serum triiodothyronine (T3) as an index of sever-ity and prognosis in alcoholic liver disease (ALD). Effect of propylthiouracil (FIU). Gastroenterology 73:A29, 1977 (ab-stract).

    Google Scholar 

  • Kater, R. M. H., Carulli, N., and Iber, F. L.: Differences in the rate of ethanol metabolism in recent drinking alcoholic and non-drinking subjects. Am. J. Clin. Nutr. 22:1608–1617, 1969.

    Google Scholar 

  • Kato, S., Alderman, J., and Lieber, C. S.: Ethanol metabolism in alcohol dehydrogenase deficient deermice is mediated by the microsomal ethanol oxidizing system, not by catalase. Alco-hol Alcoholism, (Suppl.) 1:231–234, 1987a.

    Google Scholar 

  • Kato, S., Alderman, J., and Lieber, C. S.: Respective roles of the microsomal ethanol oxidizing system (MEOS) and catalase in ethanol metabolism by deermice tacking alcohol dehydro-genase. Arch. Biochem. Biophys. 254:586–591, 1987b.

    Google Scholar 

  • Kato, S., Alderman, J., and Lieber, C. S.: In vivo role of the microsomal ethanol oxidizing system in ethanol metabolism by deermice lacking alcohol dehydrogenase. Biochem. Phar-macol. 37:2706–2708, 1988.

    Google Scholar 

  • Keilin, D., and Hartree, E. F.: Properties of catalase. Catalysis of coupled oxidation of alcohols. Biochem. J. 39:293–301, 1945.

    Google Scholar 

  • Keshavarizian, A., Wobbleton, J., Greer, P., and Iber, F. L.: Stomach emptying of solid meal in alcohol withdrawal. Alco-hol: Clin. Exp. Res. 9:88–92, 1985.

    Google Scholar 

  • Khani, S. C., Porter, T. D., and Coon, M. J.: Isolation and partial characterization of the gene for cytochrome P-450 3a (P-450ALC) and a second closely related gene. Biochem. Biophys. Res. Commun. 150:10–17, 1988.

    Google Scholar 

  • Khanna, J. M., Kalant, H., and Lin, G.: Significance in vivo of the increase in microsomal ethanol-oxidizing system after chronic administration of ethanol, phenobarbital, and chlor-cyclizine. Biochem. Pharmacol. 21:2215–2226, 1972.

    Google Scholar 

  • Kinard, F. W, McCord, W. M., and Aull, J. C.: The failure of oxygen, oxygen-carbon dioxide, or pyruvate to alter alcohol metabolism. Q. J. Stud. Alcohol 12:179–183, 1951.

    Google Scholar 

  • Kinard, F. W, Nelson, G. H., and Hay, M. G.: Catalase activity and ethanol metabolism in rat. Proc. Soc. Exp. Biol. Med. 92: 772–773, 1956.

    Google Scholar 

  • Klaassen, C. D.: Ethanol metabolism in rats after microsomal metabolizing enzyme induction. Proc. Soc. Exp. Biol. Med. 132:1099–1102, 1969.

    Google Scholar 

  • Klingman, G. I., and Goodall, McC.: Urinary epinephrine and levarterenol excretion during acute sublethial alcohol intox-ication in dogs. J. Pharmacol. Exp. Ther. 121:313–318, 1957.

    Google Scholar 

  • Koop, D. R., and Casazza, J. P.: Identification of ethanol-inducible P-450 enzyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J. Biol. Chem. 260:13607–13611, 1985.

    Google Scholar 

  • Koop, D. R., Morgan, E. T., Tarr, G. E., and Coon, M. J.: Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. J. Biol. Chem. 257:8772–8780, 1982.

    Google Scholar 

  • Kostelnik, M. E., and Iber, F. L.: Correlation of alcohol and tolbutamide blood clearance rates with microsomal enzyme activity. Am. J. Clin. Nutr. 26:161–164, 1973.

    Google Scholar 

  • Krarup, N., and Larsen, J. A.: The effect of slight hypothermia on liver function as measured by the elimination rate of ethanol, the hepatic uptake and excretion of indocyanine green and bile formation. Acta Physiol. Scand. 84:396–407, 1972.

    Google Scholar 

  • Krarup, N., and Olsen, C.: Energy requirement of the transport of reducing equivalents from cytosol to mitochondria in per-fused rat liver. Life Sci. 15:65–72, 1974.

    Google Scholar 

  • Krebs, H. A., and Perkins, J. R.: The physiological role of liver alcohol dehydrogenase. Biochem. J. 118:635–644, 1970.

    Google Scholar 

  • Kubota, S., Lasker, J. M., and Lieber, C. S.: Molecular regulation of an ethanol-inducible cytochrome P-45011E1 in hamsters. Biochem. Biophys. Res. Commun. 150:304–310, 1988.

    Google Scholar 

  • Lamboeuf, Y., De Saint Blanquat, G., and Derache, R.: Mucosal alcohol dehydrogenase-and aldehyde dehydrogenase-medi-ated ethanol oxidation in the digestive tract of the rat. Bio-chem. Pharmacol. 30:542–545, 1981.

    Google Scholar 

  • Lamboeuf, Y., La Droitte, P., and De Saint Blanquat, G.: The gastrointestinal metabolism of ethanol in the rat. Effect of chronic alcohol intoxication. Arch. Int. Pharmacodyn. Titer. 261:157–169, 1983.

    Google Scholar 

  • Lane, B. P, and Lieber, C. S.: Ultrastructural alterations in human hepatocytes following ingestion of ethanol with adequate diets. Am. J. Pathol. 49:593–603, 1966.

    Google Scholar 

  • Lane, B. P., and Lieber, C. S.: Effects of butylated hydroxytoluene on the ultrastructure of rat hepatocytes. Lab. Invest 16:341–348,1967.

    Google Scholar 

  • Lange, L. G.: Nonoxidative ethanol metabolism: Formation of fatty acid ethyl esters by cholesterol esterase. Proc. Natl. Acad. Sci. U.S.A. 79:3954–3957, 1982.

    Google Scholar 

  • Laposata, E. A., and Lange, L. G.: Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231:497–499, 1986.

    Google Scholar 

  • Larsen, J. A.: Extrahepatic metabolism of ethanol in man. Nature 184:12346, 1959.

    Google Scholar 

  • Larsen, J. A.: The effect of oxygen breathing at atmospheric pressure on the metabolism of glycerol and ethanol in cats. Acta Physiol. Scand. 73:186–195, 1968.

    Google Scholar 

  • Larsen, J. A.: The effect of cooling on liver function in cats. Acta Physiol. Scand. 81:197–207, 1971.

    Google Scholar 

  • Lasker, J. M., Bloswick, B. P., Ardies, C. M., and Lieber, C. S.: Evidence for an ethanol-inducible form of liver microsomal cytochrome P-450 in humans.,Hepatology 4:1108, 1986 (ab-stract).

    Google Scholar 

  • Lasker, J. M., Raucy, J., Kubota, S., Bloswick, B. P., Black, M., and Lieber, C. S.: Purification and characterization of human liver cytochrome P-450-ALC. Biochem. Biophys. Res. Corn-mun. 148:232–238, 1987a.

    Google Scholar 

  • Lasker, J. M., Tsutsumi, M., Bloswick, B. P., and Lieber, C. S.: Characterization of benzoflavone (BF)-inducible hamster liver cytochrome P-450 isozyme catalytically similar to cyto-chrome P-450-ALC. Hepatology 7:432, 1987b (abstract).

    Google Scholar 

  • Lereboullet, J., Barres, G., and Briard, J. P.: La courbe d’al-coolémie de Widmark est-elle toujours fiable? Bull. Acad. Nat. Med. 160:312–315, 1976.

    Google Scholar 

  • Lester, D., and Benson, G. D.: Alcohol oxidation in rats inhibited by pyrazole, oximes and amides. Science 169:282–284, 1970.

    Google Scholar 

  • Levin, W, Ryan, D., West, S., and Lu, A. Y. H.: Preparation of partially purified lipid-depleted cytochrome P-450 and re-duced nicotinamide adenine dinucleotide phosphate-cyto-chrome c reductase from rat liver. J. Biol. Chem. 249:1747–1754, 1974.

    Google Scholar 

  • Levin, W., Thomas, P. E., Oldfield, N., and Ryan, D. E.: N-de-methylation of N-nitrosodimethylamine catalyzed by purified rat hepatic microsomal cytochrome P-450: isozyme specific-ity and role of cytochrome b5. Arch. Biochem. Biophys. 248: 158–165,1986.

    Google Scholar 

  • Li, T-K.: Enzymology of human alcohol metabolism. Adv. En-zymol. 45:427–283, 1977.

    Google Scholar 

  • Li, T-K., and Magnes, L. J.: Identification of a distinctive molecular form of alcohol dehydrogenase in human livers with high activity. Biochem. Biophys. Res. Commun. 63:202–208, 1975.

    Google Scholar 

  • Lieber, C. S.: Metabolic effects produced by alcohol in the liver and other tissues. Adv. Intern. Med. 14:151–199, 1968.

    Google Scholar 

  • Lieber, C. S.: Alcohol and the liver. In: Liver Annual-IV (I. M. Arias, M. S. Frenkel, and J. H. P. Wilson, eds.), Amsterdam, The Netherlands, Excerpta Medica, pp. 130–186, 1984.

    Google Scholar 

  • Lieber, C. S.: Alcohol and the liver, In: Liver Annual-VI (I. M. Arias, M. S. Frenkel, and J. H. P. Wilson, eds.), Amsterdam, The Netherlands, Excerpta Medica, pp. 163–240, 1987.

    Google Scholar 

  • Lieber, C. S., and Davidson, C. S.: Some metabolic effects of ethyl alcohol. Am. J. Med. 33:327–329, 1962.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M.: Ethanol oxidation by hepatic microsomes: Adaptive increase after ethanol feeding. Science 162:917–918, 1968.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M.: Hepatic microsomal ethanol oxidizing system: In vitro characteristics and adaptive proper-ties in vivo. J. Biol. Chem. 245:2505–2512, 1970a.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M.: Reduced nicotinamide-adenine dinucleotide phosphate oxidase: Activity enhanced by ethanol consumption. Science 170:78–80, 1970b.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M.: Effect of drug administration on the activity of the hepatic microsomal ethanol oxidizing system. Life Sci. 9:267–276, 1970c.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M.: The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J. Pharmacol. Exp. Ther. 181:279–287, 1972.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M.: The significance and character-ization of hepatic microsomal ethanol oxidation in the liver. Drug Metab. Dispos. 1:428–440, 1973.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M.: Oxidation of ethanol by hepatic microsomes of acatalasemic mice. Biochem. Biophys. Res. Commun. 60:1187–1192, 1974.

    Google Scholar 

  • Lieber, C S., and DeCarli, L. M.: Alcoholic liver injury: Experi-mental models in rats and baboons. In: Alcoholic Intoxication and Withdrawal: Advances in Experimental Medicine and Biology, Vol. 59, (M. Gross, ed.), Plenum, New York, pp. 379–393, 1975.

    Google Scholar 

  • Lieber, C. S., Jones, D. P,. and DeCarli, L. M.: Effects of prolonged ethanol intake: Production of fatty liver despite adequate diets. J. Clin. Invest. 44:1009–1021, 1965.

    Google Scholar 

  • Lieber, C. S., Rubin, E., and DeCarli, L. M.: Hepatic microsomal ethanol oxdizing system (MEOS): Differentiation from alcohol dehydrogenase and NADPH oxidase. Biochem. Biophys. Res. Commun. 40:858–865, 1970.

    Google Scholar 

  • Lieber, C. S., Teschke, R., Hasumura, Y., and DeCarli, L. M.: Interaction of ethanol with liver microsomes: In: Alcohol and Aldehyde Metabolizing Systems (R. G. Thurman, T. Yonetani, J. R. Williamson, and B. Chance, eds.), New York, Academic Press, pp. 243–256, 1974.

    Google Scholar 

  • Lieber, C. S., Lasker, J. M., DeCarli, L. M., Saeli, J., and Wojtowicz, T.: Role of acetone, dietary fat and total energy intake in induction of hepatic microsomal ethanol oxidizing system. J. Pharmacol. Exp. Ther. 247:791–795, 1988.

    Google Scholar 

  • Lin, G. W. J., and Lester, D.: Significance of the gastrointestinal tract in the in vivo metabolism of ethanol in the rat. Adv. Exp. Med. Biol. 132:281–286, 1980.

    Google Scholar 

  • Lindros, K. O.: Role of the redox state in ethanol-induced suppres-sion of citrate-cycle flux in the perfused liver of normal, hyper-and hypothyroid rats. Eur. J. Biochem. 26:338–346, 1972.

    Google Scholar 

  • Lindros, K. O., and Hillbom, M. E.: Hepatic redox state and ketone body metabolism during oxidation of ethanol and fructose in normal, hyper-and hypothyroid rats. Ann. Med. Exp. Biol. Fenn. 49:162–169, 1971.

    Google Scholar 

  • Lowe, C. U., and Mosovich, L. L.: The paradoxical effect of alcohol on carbohydrate metabolism in four patients with liver glycogen disease. Pediatrics 35:1005–1008, 1965.

    Google Scholar 

  • Lumeng, L., and Crabb, D. W.: Rate determining factors for ethanol metabolism in fasted and castrated male rats. Bio-chem. Pharmacol. 33:2623–2628, 1984.

    Google Scholar 

  • Lundquist, F., and Wolthers, H.: The influence of fructose on the kinetics of alcohol elimination in man. Acta Pharmacol. 14: 290–294, 1958.

    Google Scholar 

  • Lundquist, F., Trgstrup, N., Winkler, K., Mellemgaard, K., and Munck-Peterson, S. T.: Ethanol metabolism and production of free acetate in the human liver. J. Clin. Invest. 41:955–961, 1962.

    Google Scholar 

  • Makar, A. B., Tephly, T R., and Mannering, G. J.: Methanol metabolism in the monkey. Mol. Pharmacol. 4:471–483, 1968.

    Google Scholar 

  • Maly, I. P., and Sasse, D.: Microquantitative determination of the distribution patterns of alcohol dehydrogenase activity in the liver of rat, guinea pig and horse. Histochemistry 83:431–436,1985.

    Google Scholar 

  • Mårdh, G., Luehr, C. A., and Vallee, B. L.: Human class I alcohol dehydrogenases catalyze the oxidation of glycols in the me-tabolism of norepinephrine. Proc. Natl. Acad. Sci. USA. 82:4979–85.

    Google Scholar 

  • Marshall, A. W, Kingstone, D., Boss, M., and Morgan, M. Y.: Ethanol elimination in males and females: Relationship to menstrual cycle and body composition. Hepatology 3:701–706.

    Google Scholar 

  • Matsuzaki, S., and Lieber, C. S.: ADH-independent ethanol oxida-tion in the liver and its increase by chronic ethanol consump-tion. Gastroenterology 69:845 (abstract), 1975.

    Google Scholar 

  • Matsuzaki, S., Gordon, E., and Lieber, C. S.: Increased ADH independent ethanol oxidation at high ethanol concentrations in isolated rat hepatocytes: The effect of chronic ethanol feeding. J. Pharm. Exp. Ther. 217:133–1981.

    Google Scholar 

  • Mattie, H.: Elimination of ethanol in rats in vitro at different oxygen pressures. Acta Physiol. Pharmacol. 12:1–11,1963.

    Google Scholar 

  • McKaigney, J. P., Carmichael, F. J., Saldivia, V., Israel, Y., and Orrego, H.: Role of ethanol metabolism in the ethanol-induced increase in splanchnic circulation. Am. J. Physiol. 250:G519–G523, 1986.

    Google Scholar 

  • McManus, I. R., Contag, A. O., and Olson, R. E.: Studies on the identification and origin of ethanol in mammalian tissues. J. Biol. Chem. 241:349–356, 1966.

    Google Scholar 

  • Meldolesi, J.: On the significance of the hypertrophy of the smooth endoplasmic reticulum in liver cells after administration of drugs. Biochem. Pharmacol. 16:125–131, 1967.

    Google Scholar 

  • Mendeloff, A. I.: Effect of intravenous infusions of ethanol upon estimated hepatic blood flow in man. J. Clin. Invest. 33: 1298–1302,1954.

    Google Scholar 

  • Messiha, F. S.: Chlorpromazine and ethanol intoxication: An underlying mechanism. Neurobehay. Toxicol. Teratol. 7:185, 1980.

    Google Scholar 

  • Mezey, E., and Potter, J. J.: Effect of castration on the turnover of rat liver alcohol dehydrogenase. Biochem. Pharmacol. 34: 369–371,1985.

    Google Scholar 

  • Mezey, E., and Robles, E. A.: Effects of phenobarbital administration on rates of ethanol clearance and on ethanol-oxidizing enzymes in man. Gastroenterology 66:248–253, 1974.

    Google Scholar 

  • Mezey, E., and Tobon, E: Rates of ethanol clearance and activities of the ethanol-oxidizing enzymes in chronic alcoholic pa-tients. Gastroenterology 61:707–715, 1971.

    Google Scholar 

  • Mezey, E., Potter, J. J., and Reed, W. D.: Ethanol oxidation by a component of liver microsomes rich in cytochrome P-450. J. Biol. Chem. 248:1183–1187, 1973.

    Google Scholar 

  • Mezey, E., Vestal, R., and Potter, J. J.: Effect of uremia on rate of ethanol disappearance from the blood and on the activities of the ethanol-oxidizing enzymes. J. Lab. Clin. Med. 86:931–937,1975.

    Google Scholar 

  • Mezey, E., Potter, J. J., and Kvetransky, R.: Effect of stress by repeated immobilization on hepatic alcohol dehydrogenase and ethanol metabolism. Biochem. Pharmacol. 28:657–663, 1979.

    Google Scholar 

  • Misra, P. S., Lefevre, A., Ishii, H., Rubin, E., and Lieber, C. S.: Increase of ethanol, meprobamate and pentobarbital metabo-lism after chronic ethanol administration in man and in rats. Am. J. Med. 51:346–351, 1971.

    Google Scholar 

  • Mitchell, M. C., Potter, J. J., and Mezey, E.: Ethanol and HZ receptor antagonists. Hepatology 5:909–910, 1985.

    Google Scholar 

  • Miwa, G. T., Levin, W, Thomas, P. E., and Lu, A. Y. H.: The direct oxidation of ethanol by a catalase-and alcohol dehydro-genase-free reconstituted system containing cytochrome P-450. Arch Biochem. Biophys. 187:464–475, 1978.

    Google Scholar 

  • Mogelson, S., and Lange, L. G.: Nonoxidative ethanol metabo-lism in rabbit myocardium: Purification to homogeneity of fatty acyl ethyl ester synthase. Biochemistry 23:4075–4081, 1984.

    Google Scholar 

  • Morgan, E. T., Koop, D. R., and Coon, M. J.: Catalytic activity of cytochrome P-450 isozyme 3a isolated from liver microsomes of ethanol-treated rabbits. J. Biol. Chem. 257:13951–13957, 1982.

    Google Scholar 

  • Morgan, E. T, Koop, D. R., and Coon, M. J.: Comparison of six rabbit liver cytochrome P-450 isozymes in formation of a reactive metabolite of acetaminophen. Biochem. Biophys. Res. Commun. 112:8–13, 1983.

    Google Scholar 

  • Morrison, G. R., and Brock, F E.: Quantitative measurement of alcohol dehydrogenase activity within the liver lobule of rats after prolonged alcohol ingestion. J. Nutr. 92:286–292,1967.

    Google Scholar 

  • Nebert, D. W, Adesnik, M., Coon, M. J., Estabrook, R. W, Gonzalez, F. J., Guengerich, P, Gunsalus, I. C., Johnson, E. E, Kemper, B., Levin, W, Phillips, I. R., Sato, R., and Waterman, M. R.: The P450 gene superfamily: Recommended nomenclature. DNA 6:1–11, 1987.

    Google Scholar 

  • Nikki, P., Vapaatalo, H., and Karppanen, H.: Effect of ethanol on body temperature, postanaesthetic shivering and tissue monoamines in halothane-anesthetized rats. Ann. Med. Exp Biol. Fenn. 49:157–161, 1971.

    Google Scholar 

  • Nomura, F, Pikkarainen, P H., Jauhonen, P, Arai, M., Gordon, E. R., Baraona, E., and Lieber, C. S.: The effect of ethanol administration on the metabolism of ethanol in baboons. J. Pharmacol. Exp. Ther. 227:78–83, 1983.

    Google Scholar 

  • Nordmann, R., Ribière, C., and Rouach, H.: Involvement of iron and iron-catalyzed free radical production in ethanol metabo-lism and toxicity. Enzyme 37:57–69, 1987.

    Google Scholar 

  • Norsten, C., Cronholm, T., Ekström, G., Handler, J. A., Thurman, R. G., and Ingelman-Sundberg, M.: Dehydrogenase-depen-dent ethanol metabolism in deermice (penomyscus manicu-latus) lacking cytosolic alcohol dehydrogenase. J. Biol. Chem. 264:5593–5597, 1989.

    Google Scholar 

  • Ogata, M., Mendelson, J. H., Mello, N. K., and Majchrowicz, E.: Adrenal function and alcoholism. II. Catecholamines. Psy-chosom. Med. 33:159–180, 1971.

    Google Scholar 

  • Ohnishi, K., and Lieber, C. S.: Reconstitution of the microsomal ethanol oxidizing system (MEOS): Qualitative and quantita-tive changes of cytochrome P-450 after chronic ethanol con-sumption. J. Biol. Chem. 252:7124–7131, 1977a.

    Google Scholar 

  • Ohnishi, K., and Lieber, C. S.: Reconstitution of the hepatic microsomal ethanol oxidizing system (MEOS) in control rats after ethanol feeding. In: Alcohol and Aldehyde Metabolizing System, Vol. II, (R. G. Thurman, J. R. Williamson, H. Drott, and B. Chance, eds.), New York, Academic Press, pp. 341–350, 1977b.

    Google Scholar 

  • Ohnishi, K., and Lieber, C. S.: Respective role of superoxide and hydroxyl radical in the activity of the reconstituted micro-somal ethanol-oxidizing system. Arch. Biochem. Biophys. 191:798–803, 1978.

    Google Scholar 

  • Okuda, K., and Takigawa, N.: Rat liver 5ß-cholestane-3a,7a,12a, 26-tetrol dehydrogenase as a liver alcohol dehydrogenase. Biochim. Biophys. Acta. 22:141–148, 1970.

    Google Scholar 

  • Orme-Johnson, W. H., and Ziegler, D. M.: Alcohol mixed function oxidase activity of mammalian liver microsomes. Biochem. Biophys. Res. Commun. 21:78–82, 1965.

    Google Scholar 

  • Oshino, N., Chance, B., Sies, H., and Bucher, T.: The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch Biochem. Biophys. 154:117–131, 1973.

    Google Scholar 

  • Oshino, N., Jamieson, D., Sugano, T., and Chance, B.: Optical measurement of the catalase-hydrogen peroxide intermediate (compound I) in the liver of anaesthetized rats and its implica-tion to hydrogen peroxide production in situ. Biochem. J. 146:67–77, 1975.

    Google Scholar 

  • Papenberg, J., von Wartburg, J. P., and Aebi, H.: Metabolism of ethanol and fructose in the perfused rat liver. Enz. Biol. Clin. 11:237–250, 1970.

    Google Scholar 

  • Pares, X., and Vallee, B. L.: New human liver alcohol dehydroge-nase forms with unique kinetic characteristics. Biochem. Biophys. Res. Commun. 98:122–130, 1981.

    Google Scholar 

  • Patel, S. R., Joshi, N. J., Bhaysar, V. H., and Kelkar, V. V.: The effect of isoniazid and cimetidine on ethanol and methanol elimination in rabbits. Acta Pharmacol. Toxicol. 58:234–236,1986.

    Google Scholar 

  • Pekkanen, L., Eriksson, K., and Silivonen, M.-L.: Dietarily induced changes in voluntary ethanol consumption and etha-nol metabolism in the rat. Br. J. Nutr. 40:103–113, 1978.

    Google Scholar 

  • Perman, E. S.: The effect of ethyl alcohol on the secretion’ from the adrenal medulla in man. Acta Physiol. Scand. 44:241–247, 1958.

    Google Scholar 

  • Perman, E. S.: The effect of ethyl alcohol on the secretion from the adrenal medulla of the cat. Acta Physiol. Scand. 48:323–328,1960.

    Google Scholar 

  • Perman, E. S.: Observation on the effect of ethanol on the urinary excretion of histamine, 5-hydroxyindole acetic acid, cate-cholamines and 17-hydroxycorticosteroids in man. Acta Physiol. Scand. 51:62–67, 1961.

    Google Scholar 

  • Pestalozzi, D. M., Buhler, R., von Wartburg, J. P., and Hess, M.: Immunohistochemical localization of alcohol dehydrogenase in the human gastrointestinal tract. Gastroenterology 85: 1011–1016, 1983.

    Google Scholar 

  • Petersen, D. R., and Atkinson, N.: Evidence for a genetic basis of microsomal ethanol oxidation (MEOS) induction in mice. In: Animal Model in Research (E. Erikson, J. D. Sinclair, and J. D. Kiianmack, eds.), New York, Academic Press, pp. 71–79, 1980.

    Google Scholar 

  • Pikkarainen, P., and Lieber, C. S.: Concentration dependency of ethanol elimination rates in baboons: Effects of chronic alco-hol consumption. Alcoholism: Clin. Exp. Res. 4:40–43, 1980.

    Google Scholar 

  • Pikkarainen, P. H., Baraona, E., Jauhonen, P, Seitz, H., and Lieber, C. S.: Contribution of oropharynx microflora and of lung microsomes to acetaldehyde in expired air after alcohol ingestion. J. Lab. Clin. Med. 97:631–638, 1981.

    Google Scholar 

  • Pilstrom, L., and Kiessling, K. H.: A possible localization of a-glycerophosphate dehydrogenase to the inner boundary membrane of mitochondria in livers from rats fed with etha-nol. Histochemistry 32:329–334, 1972.

    Google Scholar 

  • Pinkston, J. N., and Soniman, K. F. A.: Effect of light and fasting on the circadian variation of ethanol metabolism in the rat. J. Interdisc. Cycle Res. 10:185–193, 1979.

    Google Scholar 

  • Pirola, R. C., and Lieber, C. S.: The energy cost of the metabolism in drugs, including ethanol. Pharmacology 7:185–196, 1972.

    Google Scholar 

  • Pirola, R. C., and Lieber, C. S.: Energy wastage in rats given drugs that induce microsomal enzymes. J. Nutr. 105:1544–1548,1975.

    Google Scholar 

  • Pirola, R. C., and Lieber, C. S.: Hypothesis: Energy wastage in alcoholism and drug abuse: Possible role of hepatic micro-somal enzymes. Am. J. Clin. Nutr. 29:90–93, 1976.

    Google Scholar 

  • Pösö, A. R., and Forsander, O, A.: Influence of ethanol oxidation rate on the lactate/pyruvate ratio and phosphorylation state of the liver in fed rats. Acta Chem. Scand. [B] 30:801–806, 1976.

    Google Scholar 

  • Rachmamin, G’., MacDonald, J. A., Wahid, S., Clapp, T A., Khanna, T. M., and Israel, Y.: Modulation of alcohol dehy-drogenase and ethanol metabolism by sex hormones in the spontaneously hypertensive rat. Effect of chronic ethanol administration. Biochem. J. 186:483–490, 1980.

    Google Scholar 

  • Ramakrishnan, S., Prasanna, C. V, and Balasubramanian, A.: Effect of alcohol intake on rat hepatic enzymes and thyroid function. Int. J. Biochem. Biophys. 13:49–51, 1976.

    Google Scholar 

  • Raskin, N. H., and Sokoloff, L.: Ethanol induced adaptation of alcohol dehydrogenase activity in rat brain. Nature 236:138–140, 1972.

    Google Scholar 

  • Rawat, A. K., and Lundquist, E: Influence of thyroxine on the metabolism of ethanol and glycerol in rat liver slices. Eur. J. Biochem. 5:13–17, 1968.

    Google Scholar 

  • Redman, C. M., Grab, D. J., and Irukunla, R.: The intracellular pathway of newly formed rat liver catalase. Arch. Biochem. Biophys. 151:496–501, 1972.

    Google Scholar 

  • Reed, T. E.: Racial comparisons of alcohol metabolism: Back-ground, problems and results. Alcoholism: Clin. Exp. Res. 2:83–87, 1978.

    Google Scholar 

  • Reed, T. E., Kalant, H., Gibbins, R. J., Kapur, B. M., Rankin, J. G.: Alcohol and acetaldehyde metabolism in Caucasians, Chinese and Americans. Can. Med. Assoc. J. 115:851–855, 1976.

    Google Scholar 

  • Roach, M. K., Khan, M., Knapp, M., and Reese, W. N.: Ethanol metabolism in vivo and the role of hepatic microsomal ethanol oxidation. Q. J. Stud. Alcohol 33:751–755, 1972.

    Google Scholar 

  • Rodrigo, C., Anpezana, C., and Baraona, E.: Fat and nitrogen balances in rats with alcohol-induced fatty liver. J. Nutr. 101:1307–1310, 1971.

    Google Scholar 

  • Rognstad, R., and Clark, D. G.: Tritium as a tracer for reducing equivalents in isolated liver cells. Eur. J. Biochem. 42:51–60, 1974.

    Google Scholar 

  • Rubin, E., Beattie, D. S., Toth, A., and Lieber, C. S.: Structural and functional effects of ethanol on hepatitic mitochondria. Fed. Proc. 31:131–140, 1972.

    Google Scholar 

  • Ruebner, B. H., Krieger, R. I., Miller, J. L., Isao, M., and Rorvik, M.: Hepatic and metabolic effects of ethanol on rhesus monkeys. In: Advances in Experimental Medicine and Biology, Vol. 59, (M. M. Gross, ed.), New York, Plenum, pp. 395–405,1975.

    Google Scholar 

  • Ryan, D. E., Ramanthan, L., Iida, S., Thomas, P. E., Haniu, M., Shively, J. E., Lieber, C. S., and Levin, W.: Characterization of a major form of rat hepatic microsomal cytochrome P450 induced by isoniazid. J. Biol. Chem. 260:6385–6393, 1985.

    Google Scholar 

  • Ryan, D. E., Koop, D. R., Thomas, P. E., Coon, M. J., and Levin, W.: Evidence that isoniazid and ethanol induce the same microsomal cytochrome P-450 isozyme 3a. Arch. Biochem. Biophys. 246:633–644, 1986.

    Google Scholar 

  • Salaspuro, M. P, and Kesaniemi, Y. A.: Intravenous galactose elimination tests with and without ethanol loading in various clinical conditions. Scand. J. Gastroenterol. 8:681–686, 1973.

    Google Scholar 

  • Salaspuro, M. P., and Lieber, C. S.: Non-uniformity of blood ethanol elimination: Its exaggeration after chronic consumption. Ann. Clin. Res. 10:294–297, 1978.

    Google Scholar 

  • Salaspuro, M. P., and Lieber, C. S.: Comparison of the detrimental effects of chronic alcohol intake in humans and animals. In: Animal Models in Akohol Research (K. Eriksson, J. D. Sinclair and K. Klianmaa, eds.), London, Academic Press, pp. 359–376, 1980.

    Google Scholar 

  • Salaspuro, M. P., Lindros, K. O., and Pikkarainen, P.: Ethanol and galactose metabolism as influenced by 4-methylpyrazole in alcoholics with and without nutritional deficiencies. Prelimi-nary report of a new approach to pathogenesis and treatment in alcoholic liver disease. Ann. Clin. Res. 7: 269–272, 1975.

    Google Scholar 

  • Salaspuro, M. P., Shaw S., Jayatilleke, E., Ross, W. A., and Lieber, C. S.: Attenuation of the ethanol induced hepatic redox change after chronic alcohol consumption: Mechanism and metabolic consequences. Hepatology 1:33–38, 1981.

    Google Scholar 

  • Sato, N., Kamada, T, Shichiri, M., Hayashi, M., Matsumura, T, Abe, H., and Hayihara, B.: The levels of the mitochondrial and microsomal cytochromes in drinkers’ livers. Clin. Chem. Acta 87:347–351, 1978.

    Google Scholar 

  • Saville, P. D., and Lieber, C. S.: Effect of alcohol on growth bone density and muscle magnesium in the rat. J. Nutr. 87:477–488,1965.

    Google Scholar 

  • Seiden, H., Israel, Y., and Kalant, H.: Activation of ethanol metabolism by 2,4-dinitrophenol in the isolated perfused rat liver. Biochem. Pharmacol. 23:2334–2337, 1974.

    Google Scholar 

  • Seitz, H. K., Garro, A. J., and Lieber, C. S.: Effect of chronic ethanol ingestion on intestinal metabolism and mutagenicity of benzo(a)pyrene. Biochem. Biophys. Res. Commun. 85: 1061–1066,1978.

    Google Scholar 

  • Seitz, H. K., Veith, S., Czygan, P., Bosche, J., Simon, B., Gugler, R., and Kommerell, B.: In vivo interactions between H2 -receptor antagonists and ethanol metabolism in man and in rats. Hepatology 4:1231–1234, 1984.

    Google Scholar 

  • Selmer, J., and Grunnet, N.: Ethanol metabolism and lipid syn-thesis by isolated liver cells from fed rats. Biochem. Biophys. Acta 428:123–137, 1976.

    Google Scholar 

  • Sies, H.: Biochemistry of the peroxisome in the liver cell. Angew. Chem. [Engl.] 13:706–718, 1974.

    Google Scholar 

  • Shaw, S., Heller, E., Friedman, H., Baraona, E., and Lieber, C. S.: Increased hepatic oxygenation following ethanol administration in the baboon. Proc. Soc. Exp. Biol. Med. 156:509–513, 1977.

    Google Scholar 

  • Shigeta, Y., Nomura, E, Iida, S., Leo, M. A., Felder, M. R., and Lieber, C. S.: Ethanol metabolism in vivo by the microsomal ethanol oxidizing system in deermice lacking alcohol dehy-drogenase (ADH). Biochem. Pharmacol. 33:807–814, 1984.

    Google Scholar 

  • Singlevich, T. E., and Barboriak, J. J.: Liver lipds after ethanol, chlorcyclizine and DDT. Fed. Proc. 30:581 (abstract), 1971.

    Google Scholar 

  • Smith, M. E.: Interrelations in ethanol and methanol metabolism. J. Pharmacol. 134:233–237, 1961.

    Google Scholar 

  • Smith, M. M., and Dawson, A. G.: Effect of triiodothyronine on alcohol dehydrogenase and aldehyde dehydrogenase active-ities in rat liver. Implication for the control of ethanol metabo-lism. Biochem. Pharmacol. 34:2291–2296, 1985.

    Google Scholar 

  • Smith, M., Hopkinson, D. A., and Harris, H.: Developmental changes and polymorphism in human alcohol dehydroge-nase. Ann. Hum. Genet. 34:251–271, 1971.

    Google Scholar 

  • Smythe, C. McC., Heinemann, H. P., and Bradley, S. E.: Esti-mated hepatic blood flow in the dog: effect of ethyl alcohol on it, renal blood flow, cardiac output and arterial pressure. Am. J. Physiol. 172:737–741, 1953.

    Google Scholar 

  • Song, B.-J., Gelboin, H. V., Park, S.-S., Yang, C. S., and Gonzalez, E. J. Complementary DNA and protein sequences of ethanol-inducible rat and human cytochrome P-450s, J. Biol. Chem. 261:16689–16697, 1986.

    Google Scholar 

  • Sotaniemi, E., Isoaho, R., Huhti, E., Huikko, M., and Koivisto, O.: Increased clearance of ethanol from the blood of asth-matic patients. Ann. Allergy 30:254–257, 1972.

    Google Scholar 

  • Stamatoyannopoulos, G., Chen, S., and Fukui, M.: Liver alcohol-dehydrogenase in Japanese: High population frequency of atypical form and its possible role in alcohol sensitivity. Am. J. Hum. Genet. 27:789–796, 1975.

    Google Scholar 

  • Stein, W. S., Lieber, C. S., Leevy, C. M., Cherrick, G. R., and Abelmann, W. H.: The effect of ethanol upon systemic and hepatic blood flow in man. Am. J. Clin. Nutr. 13:68–74, 1963.

    Google Scholar 

  • Stokes, P. E., and Lasley, B.: Further studies on blood alcohol kinetics in man as affected by thyroid hormones, insulin and D-glucose. In Biochemical Factors in Alcoholism (R. P. Maickel, ed.), New York, Pergamon Press, pp. 101–114, 1967.

    Google Scholar 

  • Sturtevant, E. M., Sturtevant, R. P, Scheving, L. E., and Pauly, J. E.: Chronopharmacokinetics of ethanol. II. Circadian rhythm in rate of blood level decline in a single subject. Naunyn-Schmiedebergs. Arch. Pharmakol. 293:203–208, 1976.

    Google Scholar 

  • Takagi, T., Alderman, J., and Lieber, C. S.: In vivo roles of alcohl dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice. Alcohol 2:9–12, 1985.

    Google Scholar 

  • Takagi, T., Alderman, J., Gellert, J., and Lieber, C. S.: Assessment of the role of non-ADH ethanol oxidation in vivo and in hepatocytes from deermice. Biochem. Pharmacol. 35:3601–3606,1986.

    Google Scholar 

  • Tephly, T. R., Tinelli, E, and Watkins, W. D.: Alcohol metabolism: Role of microsomal oxidation in vivo. Science 166:627–628, 1969.

    Google Scholar 

  • Teschke, R., Hasumura, Y., Joly, J.-G., Ishii, H., and Lieber, C. S.: Microsomal ethanol-oxidizing system (MEOS): Puri-fication and properties of a rat liver system free of catalase and alcohol dehydrogenase. Biochem. Biophys. Res. Com-mun. 49: 1187–1193, 1972.

    Google Scholar 

  • Teschke, R., Hasumura, Y., and Lieber, C. S.: Hepatic microsomal ethanol oxidizing system: Solubilization, isolation and char-acterization. Arch. Biochem. Biophys. 163:404–415, 1974a.

    Google Scholar 

  • Teschke, R., Hasumura, Y., and Lieber, C. S.: NADPH dependent oxidation of methanol, ethanol, propanol and butanol by hepatic microsomes. Biochem. Biophys. Res. Commun. 60: 851–857, 1974b.

    Google Scholar 

  • Teschke, R., Hasumura, Y., and Lieber, C. S.: Hepatic microsomal alcohol oxidizing system. Affinity for methanol, ethanol and propanol. J. Biol. Chem. 250:7397–7404, 1975a.

    Google Scholar 

  • Teschke, R., Hasumura, Y., and Lieber, C. S.: Hepatic microsomal alcohol oxidizing system in normal and acatalsemic mice: Its dissociation from the peroxidatic activity of catalase-H2O2. Mol. Pharmacol. 11:841–849, 1975b.

    Google Scholar 

  • Teschke, R., Matsuzaki, S., Ohnishi, K., DeCarli, L. M., and Lieber, C. S.: Microsomal ethanol oxidizing system (MEOS): Current status of its characterization and its role. Alcoholism: Clin. Exp. Res. 1:7–15, 1977.

    Google Scholar 

  • Teschke, R., Wannagat, F-J., Löwendorf, F., and Strohmeyer, G.: Hepatic alcohol-metabolizing enzymes after prolonged administration of sex hormones and alcohol in female rats. Biochem. Pharmacol. 35:521–527, 1986.

    Google Scholar 

  • Theorell, H., and Chance, B.: Studies on liver alcohol dehydroge-nase. II. The kinetics of the compounds of horse liver alcohol dehydrogenase and reduced diphosphopyridine nucleotide. Acta Chem. Scand. 5:1127–1144, 1951.

    Google Scholar 

  • Theorell, H., Nygaard, A. P., and Bonnichsen, R.: Studies on liver alcohol dehydrogenase. III. The influence of pH and some anions on the reaction velocity constants. Acta Chem. Scand. 9:1148–1165, 1955.

    Google Scholar 

  • Thieden, H. I. D.: The effect of ethanol concentration on ethanol oxidation rate in rat liver slices. Acta Chem. Scand. 25:3421–3427, 1971.

    Google Scholar 

  • Thieden, H. I. D., Grunnet, N., Damgaard, S. E., and Sestoft, L.: Effect of fructose and glyceraldehyde on ethanol metabolism in human liver and in rat liver. Eur. J. Biochem. 30:250–261, 1972.

    Google Scholar 

  • Thomasson, H. R., Crabb, D. W, Edenberg, H. J., Ching, C., Ostrofsky, Y. M., Li, T-K.: Allele frequencies for alcohol and aldehyde dehydrogenases in Hawaiians and Byelorussians. Alcoholism: Clin. Exp. Res. 15:358, 1991 (abstract).

    Google Scholar 

  • Thompson, G. N.:,Alcoholism. Springfield, IL, Charles C. Thomas, 1956.

    Google Scholar 

  • Thurman, R. G.: Induction of hepatic microsomal reduced nico-tinamide adenine dinucleotide phosphate-dependent produc-tion of hydrogen peroxide by chronic prior treatment with ethanol. Mol. Pharmacol. 9:670–675, 1973.

    Google Scholar 

  • Thurman, R. G., and Brentzel, H. J.: The role of alcohol dehydrogenase in microsomal ethanol oxidation and the adaptive increase in ethanol metabolism due to chronic treatment with ethanol. Alcoholism: Clin. Exp. Res. 1:33–38, 1977.

    Google Scholar 

  • Thurman, R. G., Ley, H. G., and Scholz, R.: Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur. J. Biochem. 25:420–430, 1972.

    Google Scholar 

  • Thurman, R. G., McKenna, W. R., and McCaffrey, T. B.: Pathways responsible for the adaptive increase in ethanol utilization following chronic treatment with ethanol: Inhibitor studies with the hemoglobin-free perfused rat liver. Mol. Pharmacol. 12:156–166, 1976.

    Google Scholar 

  • Tobon, F, and Mezey, E.: Effect of ethanol administration on hepatic ethanol and drug-metabolizing enzymes and on rates of ethanol degradation. J. Lab. Clin. Med. 77:110–121, 1971.

    Google Scholar 

  • lrémolières, J., and Carré, L.: Etudes sur les modalitiés d’oxyda-tion de l’alcool chez l’homme normal et alcoolique. Rev. Alcool. 7:202–227, 1961.

    Google Scholar 

  • Tzamaloukas, A. H., Jackson, J. E., Hermann, J. J., Gallegos, J. C., Long, D. A., and McLane, M.M.: Ethanol elimination in the anesthetized dog: Intragastric versus intravenous admin-istration. Alcohol 5:111–116, 1988.

    Google Scholar 

  • Ugarte, G., Pino, M.E., and Insunza, I.: Hepatic alcohol dehydro-genase in alcoholic addicts with and without hepatic damage. Am. J. Dig. Dis. 12:589–592, 1967.

    Google Scholar 

  • Ugarte, G., and Persea, T.: Influence of hyperthyroidism on the rate of ethanol metabolism in man. Nutr. Metab. 22:113–118, 1978.

    Google Scholar 

  • Ugarte, G., Pereda, I., Pino, M. F., and Iturriaga, H.: Influence of alcohol intake, length of abstinence and meprobamate on the rate of ethanol metabolism in man. Q. J. Stud. Alcohol 33: 698–705, 1972.

    Google Scholar 

  • Ullrich, V., Weber, P., and Wollenberg, P.: Tetrahydrofurante-an inhibitor for ethanol-induced liver microsomal cytochrome P-450. Biochem. Biophys. Res. Commun. 64:808–813, 1975.

    Google Scholar 

  • Umeno, M., Song, B. J., Kozak, C., Gelboin, H. V., and Gonzalez, F. J.: The rat P4501IE1 gene: Complete intron and exon sequence, chromosome mapping, and correlation of developmental expression with specific 5’ cytosine demethyl-ation. J. Biol. Chem. 263:4956–4962, 1988a.

    Google Scholar 

  • Umeno, M., McBride, O. W, Yang, C. S., Gelboin, H. V., and Gonzalez, F.J.: Human ethanol-inducible P450IIE1: Complete gene sequence, promoter characterization, chromosomes mapping, and cDNA-directed expression. Biochemis-try 27:9006–9013, 1988b.

    Google Scholar 

  • Utne, H. E., Vallo Hansen, F, Winkler, K., and Schulsinger, F: Alcohol elimination rates in adoptees with and without alco-holic parents. J. Stud. Alcohol 38:1219–1223, 1977.

    Google Scholar 

  • Väänänen, H., Salaspuro, M., and Lindros, K.: The effect of chronic ethanol ingestion on ethanol metabolizing enzymes in isolated periportal and perivenous rat hepatocytes. Hepatol-ogy 4:862–866, 1984.

    Google Scholar 

  • Vallee, B. L., and Bazzone, T. J.: Isozymes of human liver alcohol dehydrogenase. Isozymes. Curr. Top. Biol. Med. Res. 8:219–244, 1983.

    Google Scholar 

  • Van Thiel, D. H., Gavaler, J., and Lester, R.: Ethanol inhibition of vitamin A metabolism in the testes: Possible mechanisms for sterility in alcoholics. Science 186:941–942, 1974.

    Google Scholar 

  • Vatsis, K. P., and Schulman, M. P.: Absence of ethanol metabolism in “acatalatic” hepatic microsomes that oxidize drugs. Biochem. Biophys. Res. Commun. 52:588–594, 1973.

    Google Scholar 

  • Vatsis, K. P., and Schulman, M. P.: An unidentified constituent of ethanol oxidation in hepatic microsomes. Fed. Proc. 33:554 (abstract), 1974.

    Google Scholar 

  • Veech, R. L., Eggleston, L. V, and Krebs, H. A.: The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem. J. 115:609–619, 1969.

    Google Scholar 

  • Veech, R. L., Guynn, R., and Veloso, D.: The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J. 127:387–397, 1972.

    Google Scholar 

  • Vessell, E. S., Page, J. G., and Passananti, G. T.: Genetic and environmental factors affecting ethanol metabolism in man. Clin. Pharmacol. Ther. 12:192–201, 1971.

    Google Scholar 

  • Videla, L., Bernstein, J., and Israel, Y.: Metabolic alterations produced in the liver by chronic ethanol administration. Increased oxidative capacity. Biochem. J. 134:507–514, 1973.

    Google Scholar 

  • Videla, L., Flattery, K. V, Sellers, E. A., and Israel, Y.: Ethanol metabolism and liver oxidative capacity in cold acclimation. J. Pharmacol. Exp. Titer. 192:575–582, 1975.

    Google Scholar 

  • Vind, C., and Grunnet, N.: Contribution of non-ADH pathways to ethanol oxidation in hepatocytes from fed and hyperthyroid rats. Biochem. Pharmacol. 34:655–661, 1985.

    Google Scholar 

  • von Wartburg, J. P, and Schurch, P. M.: Atypical human liver alcohol dehydrogenase. Ann. N.Y. Acad. Sci. 151:936–946, 1968.

    Google Scholar 

  • von Wartburg, J. P., Rothlisberger, M., and Eppenberger, M. H.: Hemmung der Athylalkoholoxydation durch Fusselöle. He Iv. Med. Acta 28:696–704, 1961.

    Google Scholar 

  • von Wartburg J. P., Bethune, J. L., and Vallee, B. L.: Human liver-alcohol dehydrogenase. Kinetic and physiochemical proper-ties. Biochemistry 3:1775–1782, 1964.

    Google Scholar 

  • von Wartburg, J. P., Papenberg, J., and Aebi, H.: An atypical human alcohol dehydrogenase. Can. J. Biochem. 43:889–898,1965.

    Google Scholar 

  • Wagner, J. G.: Lack of first-pass metabolism of ethanol at blood concentrations in the social drinking range. Life Sci. 39:407–414, 1986.

    Google Scholar 

  • Wagner, J. G., Wilkinson, P. K., and Ganes, D. A.: Parameters V m and K m for elimination of alcohol in young male subjects following low doses of alcohol. Alcohol Alcoholism 24:555–564,1989.

    Google Scholar 

  • Welling, P. G., and Tse, F. L.: Food interactions affecting the absorption of analgesic and antiinflammatory agents. Drug Nutr. Interact. 2:153–168, 1983.

    Google Scholar 

  • Wendell, G., and Thurman, R. G.: Effect of ethanol concentration on rates of ethanol elimination in normal and alcohol-treated rats in vivo. Biochem. Pharmacol. 28:273–279, 1979.

    Google Scholar 

  • Whereat, A. F., Orishimo, M. W, and Nelson, J.: The location of different synthetic systems for fatty acids in inner and outer mitochondrial membranes from rabbit heart. J. Biol. Chem. 244:6498–6506, 1969.

    Google Scholar 

  • Whitehouse, L. W, Paul, C. J., and Thomas, B. H.: Isoniazid induced tolerance to ethanol in rabbits, guinea pig and ratBiopharm. Drug Dispos. 1:235–245, 1980.

    Google Scholar 

  • Williamson, J. R., Scholz, R., Browning, E. T., Thurman, R. G., and Fukami, M. H.: Metabolic effects of ethanol in perfused rat liver. J. Biol. Chem. 25:5044–5054, 1969.

    Google Scholar 

  • Wilson, R. H.L., Newman, E. J., and Newman, H. W: Diurnal variation in rate of alcohol metabolism. J. Appl. Physiol. 8: 556–558,1956.

    Google Scholar 

  • Wilson, J. S., Korsent, M. A., and Lieber, C. S.: The combined effects of protein deficiency and chronic ethanol administra-tion on rat ethanol metabolism. Hepatology 6:823–829, 1986.

    Google Scholar 

  • Winkler, K., Lundquist, F., and Tygstrup, N.: The hepatic metabolism of ethanol in patients with cirrhosis of the liver. Scand. J. Clin. Lab. Invest. 23:59–69, 1969.

    Google Scholar 

  • Wolff, P H.: Ethnic differences in alcohol sensitivity. Science 275:449–450, 1972.

    Google Scholar 

  • Wrighton, S. A., Thomas, P. E., Molowa, D. T, Haniu, M., Shively, J. E., Maines, S. L., Watkins, P. B., Parker, G., Mendez-Picon, G., Levin, W, and Guzelian, P. S.: Character-ization of ethanol-inducible human liver N-nitrosodimethyl-amine dimethylase. Biochemistry 25:6731–6735, 1986.

    Google Scholar 

  • Wrighton, S. A., Thomas, P E., Ryan, D. E., and Levin, W: Purification and characterization of ethanol-inducible human hepatic cytochrome P-450HIj. Arch. Biochem. Biophys. 258: 292–297, 1987.

    Google Scholar 

  • Yang, C. S., Tu, Y. Y., Koop, D. R., and Coon, M. J. Metabolism of nitrosamines by purified rabbit liver cytochrome P-450 isozymes. Cancer Res. 45:1140–1145, 1985.

    Google Scholar 

  • Ylikahri, R. H.: Ethanol-induced changes in hepatic a-glycero-phosphate and triglyceride concentration in normal and thyroxine-treated rats. Metabolism 19:1036–1045, 1970.

    Google Scholar 

  • Ylikahri, R. Y., and Maenpaa, P. H.: Rate of ethanol metabolism in fed and starved rats after thyroxine treatment. Acta Chem. Scand. 22:1707–1709, 1968.

    Google Scholar 

  • Ylikahri, R. H., Hassinen, I. E., and Kahonen, M. T: Metabolic interactions of fructose and ethanol in perfused liver of normal and thyroxine-treated rats. Metabolism 20:555–567, 1971.

    Google Scholar 

  • Yuki, T., and Thurman, R. G.: The swift increase in alcohol metabolism. Time course for the increase in hepatic oxygen uptake and the involvement of glycolysis. Biochem. J. 186: 119–126, 1980.

    Google Scholar 

  • Yuki, T., Thruman, R. G., Schwabe, U., and Schonz, R.: Meta-bolic changes after prior treatment with ethanol. Evidence against an involvement of the Na+-K+-activated ATPase in the increase in ethanol metabolism. Biochem. J. 186:997–1000, 1980.

    Google Scholar 

  • Ziegler, D. M.: Discussion in Mierosomes and Drug Oxidation. In: Microsomes and Drug Oxidations (R. W. Estabrook, R. J. Gilhette, and K. C. Liebman, eds.), Baltimore, Williams & Wilkins, pp. 458–460, 1972.

    Google Scholar 

  • Zorzano, A., Ruiz del Arbol L., and Herrera, E.: Effect of liver disorders on ethanol elimination and alcohol and aldehyde dehydrogenase activities in liver and erythrocytes. Clin. Sci. 76:51–57, 1989.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lieber, C.S. (1992). Metabolism of Ethanol. In: Medical and Nutritional Complications of Alcoholism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3320-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3320-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6462-7

  • Online ISBN: 978-1-4615-3320-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics