Skip to main content

Cellular Mechanisms

The Potential Role of Polyamines in Intestinal Adaptation

  • Chapter
Modern Concepts in Gastroenterology

Part of the book series: Topics in Gastroenterology ((TGEN))

  • 60 Accesses

Abstract

The polyamines putrescine, spermidine, spermine, and their acetylated derivatives are a group of ubiquitously distributed organic polycations. Although their exact physiological function has not been elucidated fully at the molecular level, these amines are required for normal cell growth and differentiation. Very little is known about the function of polyamines in the gastrointestinal tract, although interest in and knowledge of this area is rapidly expanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luk GD, Marton LJ, Baylin SB. Ornithine decarboxylase is important in intestinal mucosal maturation and recovery from injury in the rat. Science 1980; 210: 195–198.

    Article  CAS  Google Scholar 

  2. Luk GD, Baylin SB. Polyamines and intestinal growth—increased polyamine biosynthesis after jejunectomy. Am J Physiol 1983; 245 (Gastroinaest Liver Physiol 8):G656–G660.

    PubMed  CAS  Google Scholar 

  3. Yang P, Baylin SB, Luk GD. Polyamines and intestinal growth: absolute requirement for ODC activity in adaptation during lactation. Am J Physiol Gastrointest Liver Physiol 10) 1984; 247: G553–G5

    CAS  Google Scholar 

  4. Seidel ER, Haddox MK, Johnson LR. Polyamines in the response to intestinal obstruction. Am J Physiol 1984; 246 (Gastrointest Liver Physiol 9):G649–G653.

    PubMed  CAS  Google Scholar 

  5. Dowling RH, Hosomi M, Stace NH, et al. Hormones and polyamines in intestinal and pancreatic adaptation. Scand J Gastroenterol 1985; 112 (Suppl):84–95.

    Article  CAS  Google Scholar 

  6. Crean GP, Hogg DF, Rumsey RDE. Hyperplasia of the gastric mucosa produced by duodenal obstruction. Gastroenterology 1969; 56: 193–199.

    PubMed  CAS  Google Scholar 

  7. Burnham D. Epithelial cell production and mucosal morphology in colonic obstruction. Cell Tissue Res 1983; 230: 185–196.

    Article  PubMed  CAS  Google Scholar 

  8. Ecknauer R, Clarke RM, Meyer H. Acute distal intestinal obstruction in gnotobiotic rats. Virchows Arch B 1977; 25: 151–160.

    CAS  Google Scholar 

  9. Tabor CE, Tabor H. Polyamines in microorganisms. Microbiol Rev 1985; 49: 81–99.

    PubMed  CAS  Google Scholar 

  10. Seidel ER, Haddox MK, Johnson LR. Heal mucosal growth during intraluminal infusion of ethylamine or putrescine. Am J Physiol (Gastrointest Liver Physiol 12) 249: G434–G438, 1985.

    PubMed  CAS  Google Scholar 

  11. Canellakis ZN, Heller JS, Kyriakidis DA, Chen KY. Intracellular levels of ornithine decarboxylase, its half-life, and a hypothesis relating polyamine-sensitive membrane receptors to growth. Adv Polyamine Res 1978; 1: 17–30.

    CAS  Google Scholar 

  12. Canellakis ZN, Lande LA, Brody PK. Factors mediating the activity of ornithine decarboxylase in rat HTC cells. Med. Biol 1981; 59: 300–307.

    PubMed  CAS  Google Scholar 

  13. Kumagai J, Wang P, Johnson LR. Stimulation of putrescine uptake in isolated enterocytes by refeeding. Gastroenterology 1987; 92: 1483.

    Google Scholar 

  14. Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesions in rats. Jpn J Pharmacol 1983; 33: 939–945.

    Article  PubMed  CAS  Google Scholar 

  15. Steiner M, Boughes HR, Freeman LS, Gray SJ. Effect of starvation on the tissue composition of the small intestine in the rat. Am J Physiol 1968; 215: 75–77.

    PubMed  CAS  Google Scholar 

  16. Levine GM, Deren E, Steiger E, Zinno R. Role of oral intake in maintenance of gut mass and disaccharide activity. Gastroenterology 1974; 67: 975–982.

    PubMed  CAS  Google Scholar 

  17. Antony P, Gibson KI, Harris P. Ornithine decarboxylase activity in the isolated perfused rat heart. Biochem Soc Trans 1975; 3: 272–274.

    PubMed  CAS  Google Scholar 

  18. Oka T, Perry JW. Studies on regulatory factors of ornithine decarboxylase activity during development of mouse mammary epithelium in vitro. J Biol Chem 1976; 251: 1738–1744.

    PubMed  CAS  Google Scholar 

  19. Panko WB, Kenney FT. Hormonal stimulation of hepatic ornithine decarboxylase. Biochem Biophys Res Commun 1971; 43: 346–350.

    Article  PubMed  CAS  Google Scholar 

  20. Icekson I, Kaye AM, Lieberman ME, et al. Stimulating by luteinizing hormone of ornithine decarboxylase in rat ovary: preferential response by follicular tissue. J Endocrinol 1974; 417–418.

    Google Scholar 

  21. Feldman EJ, Aures D, Grossman MI. Epidermal growth factor stimulates ornithine decarboxylase activity in the digestive tract of the mouse. Proc Soc Exp Biol Med 1978; 159: 400–402.

    PubMed  CAS  Google Scholar 

  22. Gleeson MH, Bloom SR, Polak JM, et al. Endocrine tumor in kidney affecting small bowel structure, motility, and absorptive function. Gut 1971; 12: 773–782.

    Article  PubMed  CAS  Google Scholar 

  23. Seidel ER, Tabata K, Dembinski AB, Johnson LR. Attenuation of the trophic response to gastrin after inhibition of ornithine decarboxylase. Am J Physiol (Gastrointest Liver Physiol 12) 1985; 249: G16–G20

    CAS  Google Scholar 

  24. Danzin C, Bolkenius FN, Claverie N, et al. Secretin-induced accumulation of N’-acetylsper-midine and putrescine in the rat pancreas. Biophys Biochem Res Commun 1982; 109: 1234–1236.

    Article  CAS  Google Scholar 

  25. Weser E, Hernadez MH. Studies of small bowel adaptation after intestinal resection in the rat. Gastroenterology 1971; 60: 69–75.

    PubMed  CAS  Google Scholar 

  26. Booth CC, Evan KT, Menzies T, Street DF. Intestinal hypertrophy following partial resection of the small bowel in the rat. Br J Surg 1956; 46: 403–410.

    Article  Google Scholar 

  27. Bowen JC, Paddock GC, Bush JC, et al. Comparison of gastric responses to small bowel intestinal resection and bypass in rats. Surgery 1977; 83: 402–405.

    Google Scholar 

  28. Haarstad H, Winnberg A, Petersen H. Effects of a cholecystokinin-like peptide on DNA and polyamine synthesis in the rat pancreas. Scand J Gastroenterology 1985; 20: 530–538.

    Article  CAS  Google Scholar 

  29. Benrezzak O, Morisset J. Effects of difluoromethylorninthine on pancreatic growth induced by caerulein. Reg Peptides 1984; 9: 143–153.

    Article  CAS  Google Scholar 

  30. Tomas M, Poso H, Lapinjoki SP, et al. Growth signal transduction: rapid activation of covalently bound ornithine decarboxylase during phosphatidylinositol breakdown. Cell 1987; 49: 171–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seidel, E.R. (1992). Cellular Mechanisms. In: Thomson, A.B.R., Shaffer, E. (eds) Modern Concepts in Gastroenterology. Topics in Gastroenterology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3314-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3314-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6459-7

  • Online ISBN: 978-1-4615-3314-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics