Skip to main content

Involvement of Calcium, Lipolytic Enzymes, and Free Fatty Acids in Ischemic Brain Trauma

  • Chapter
Neurochemical Correlates of Cerebral Ischemia

Part of the book series: Advances in Neurochemistry ((ANCH,volume 7))

Abstract

The onset of cerebral ischemia causes a series of metabolic changes in central nervous system (CNS) that lead to the depletion of energy reserves and the loss of neuronal function in a time-dependent manner (Siesjö, 1981, 1984; Siesjö and Wieloch, 1985). At early stages of ischemia, recirculation of blood flow restores the energy reserves and neuronal functions, but there is a critical period of ischemia after which these functions are restored only partially upon reperfusion. Blood reflow under such conditions is assumed to be more harmful to the organ or tissue than is continued ischemia alone (Siesjö and Wieloch, 1985). In the past decade many potentially damaging factors such as ATP depletion, plasma membrane phospholipid degradation, loss of calcium homeostasis, cellular acidosis, superoxide-induced membrane damage, and mitochondrial dysfunction have been reported to play important role in ischemic injury (Siesjö, 1990; Bazan, 1976; Bazan et al., 1986). Several studies have indicated that ischemic insult markedly affects membrane integrity and membrane-associated functions such as activities of membrane-bound enzymes, ion transport, oxidative phosphorylation, and synaptic transmission (Siesjö, 1984; Bazan et al., 1986; Flynn et al., 1989). The purpose of this article is to discuss and critically evaluate the biochemical events (such as changes in calcium homeostasis, turnover of membrane phospholipids, and activation of phospholipases) initiated by ischemia and their potential role in determining the survival of nerve cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarsman A. J., Mynbeek, G., Van Den Bosch, H., Rothhut, B., Prieur, B., Comera, C., Jordan, L., and Russo-Marie, F., 1987, Lipocortin inhibition of extracellular and intracellular phospho-lipases A2 is substrate concentration dependent, FEBS Lett. 219:176–180.

    Article  PubMed  CAS  Google Scholar 

  • Abe, K., Kogure, K., Yamamoto, H., Imazawa, M., and Miyamoto, K., 1987, Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex, J. Neurochem. 48:503–509.

    Article  PubMed  CAS  Google Scholar 

  • Abe, K., Yuki, S., and Kogure, K., 1988, Strong attenuation of ischemic and postischemic brain edema in rats by a novel free radical scavenger, Stroke 19:480–485.

    Article  PubMed  CAS  Google Scholar 

  • Alberghina, M., Biola, M., and Giuffrida, A. M., 1982, Changes in enzyme activities of glycerolipid metabolism of guinea-pig cerebral hemispheres during experimental hypoxia, J. Neurosci. Res. 7:147–154.

    Article  PubMed  CAS  Google Scholar 

  • Arrigoni, E., Averet, N., and Cohadon, F., 1987, Effects of CDP-choline on phospholipase A2 and cholinephosphotransferase activities following a cryogenic brain injury in the rabbit, Biochem. Pharmacol. 36:3697–3700.

    Article  PubMed  CAS  Google Scholar 

  • Arthur, G., Covic, L., Wientzek, M., and Choy, R C., 1985, Plasmalogenase in hamster heart, Biochim. Biophys. Acta 833:189–195.

    Article  PubMed  CAS  Google Scholar 

  • Au A. M., Chan P. H., and Fishman, R. A., 1985, Stimulation of phospholipase A2 activity by oxygen-derived free radicals in isolated brain capillaries, J. Cell. Biochem. 27:449–457.

    Article  PubMed  CAS  Google Scholar 

  • Baethmann, A., and Jansen, M., 1986, Possible role of calcium entry blockers in brain protection, Eur. Neurol. 25:102–114.

    Article  PubMed  CAS  Google Scholar 

  • Baskin D. S., Hosobuchi, Y., and Grevel, J. C., 1986, Treatment of experimental stroke with opiate antagonists, J.Neurosurg. 64:99–103.

    Article  PubMed  CAS  Google Scholar 

  • Bassi, S., Albizzati M. G., and Sbacchi, M., 1984, Double blind evaluation of monosialoganglioside (GM) therapy in stroke, J. Neurosci. Res. 12:493–498.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G., 1970, Effect of ischemia and electroconvulsive shock on free fatty acid pool in the brain, Biochim. Biophys. Acta 218:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G., 1971, Changes in free fatty acids of brain by drug-induced convulsions, electroshock and anesthesia, J. Neurochem. 18:1379–1385.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, N. G., 1976, Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock, Adv. Exp. Med. Biol. 72:317–335.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G., Birkle D. L., Tang, W., and Reddy, T. S., 1986, The accumulation of free arachidonic acid, diacylglycerols, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy, Adv. Neurol. 44:879–902.

    PubMed  CAS  Google Scholar 

  • Becker D. P., Verity M. A., Povlishock, J., and Cheung, M., 1988, Brain cellular injury and recovery-horizons for improving medical therapies in stroke and trauma, West. J. Med. 148: 670–684.

    PubMed  CAS  Google Scholar 

  • Bell R. L., Kennedy D. A., Standford, N., and Majerus, P. W., 1979, Diglyceride lipase: A pathway for arachidonic release from human platelets, Proc. Natl. Acad. Sci. USA 76:3238–3241.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, H., Brejer, J., and Schousboe, A., 1984, Elevation of the extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral misodialysis, J Neurochem. 43:1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messenger, Biochem. J. 220: 345–360.

    PubMed  CAS  Google Scholar 

  • Besterman J. M., Duronio, V., and Cuatrecasas, P., 1986, Rapid formation of diacylglycerol from phosphatidylcholine: A pathway for generation of a second messenger, Proc. Natl. Acad. Sci. USA 83:6785–6789.

    Article  PubMed  CAS  Google Scholar 

  • Carolei, A., Fieschi, C., Bruno, R., and Toffano, G., 1991, Monosialoganglioside GM1 in cerebral ischemia, Cerebrovasc. Brain. Metab. Rev. 3:134–157.

    PubMed  CAS  Google Scholar 

  • Chan, P.H., Kerian, R., and Fishman, R. A., 1983a, Reductions of G ABA and glutamate uptake and (Na+ + K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid, J. Neuro-chem. 40:309–316.

    CAS  Google Scholar 

  • Chan, R H., Fishman R. A., Caronna, J., Schmidley J. W., and Prioleau, G., 1983b, Induction of brain edema following intracerebral injection of arachidonic acid, Ann. Neurol. 13:625–632.

    Article  PubMed  CAS  Google Scholar 

  • Chang, J., Blazek, E., and Carlson, R. P., 1987, Inhibition of phospholipase A2 (PLA2) activity by nifedipine and nisoldipine is independent of their calcium channel-blocking activity, Inflammation 11:353–364.

    Article  PubMed  CAS  Google Scholar 

  • Cheung J. Y., Bonventre, J. V., Malis C. D., and Leaf, A., 1986, Calcium and ischemic injury, N. Engl. J. Med. 314:1670–1676.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W., 1988, Calcium-mediated neurotoxicity: Relationship to specific channel types and role in ischemic damage, Trends Neurosci. 11:465–469.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D. W., 1990, Cerebral hypoxia: Some new approaches and unanswered questions, J. Neurosci. 10:2493–2501.

    PubMed  CAS  Google Scholar 

  • Cooper H. K., Zalewska, T., Kawakami, S., Hossman, K-A., and Kleihues, P., 1977, The effect of ischaemia and recirculation on protein synthesis in the rat brain, J. Neurochem. 28:20–34.

    Google Scholar 

  • Crompton, M., and Heid, I., 1978, The cycling of calcium, sodium, and protons across the inner membrane of cardiac mitochondria, Eur. J. Biochem. 91:599–610.

    Article  PubMed  CAS  Google Scholar 

  • Dahlen S. E., Bjork, J., Hedquist, P., Arfors K. E., Hammarstrom, S., Lindgren J. A., and Samuelsson, B., 1981, Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary vessels: In vivo effects with relevance to the acute inflammatory response, Proc. Natl. Acad. Sci. USA 78:3887–3891.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, F. F., Dennis E. A., Powell, M., and Glenney J. R., Jr., 1987, Inhibition of phospholipase A2 by “lipocortins” and calpactins, J. Biol. Chem. 262:1698–1705.

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., Irvine, R. F., Bray, J., and Quinn, P., 1984, Long-chain unsaturated diacylglycerols cause a perturbation in the structure of phospholipid bilayer rendering them susceptible to phospholipase attack, Biochem. Biophys. Res. Commun. 125:836–842.

    Article  PubMed  CAS  Google Scholar 

  • De Medio G. E., Goraaci, G., Horrocks L. A., Lazarewicz J. W., Mazzari, S., Porcellati, G., Strosznajder, J., and Trovarelli, G., 1980, The effect of transient ischemia on fatty acid and lipid metabolism in the gerbil brain, Ital. J. Biochem. 29:412–432.

    PubMed  Google Scholar 

  • Demediuk, P., Saunders R. D., Clendenon N. R., Means E. D., Anderson D. K., and Horrocks, L. A., 1985, Changes in lipid metabolism in traumatized spinal cord, Prog. Brain Res. 63: 211–226.

    Article  PubMed  CAS  Google Scholar 

  • Demopoulos H. B., Flamm E. E., Pietronigro D. D., and Seligman, M. L., 1980, The free radical pathology and the microcirculation in the major central nervous system disorders, Acta Physiol. Scand. Suppl. 429:91–119.

    Google Scholar 

  • Dennis, E. A., 1983, Phospholipases, in “The Enzymes” (R Boyer, ed.) pp. 307–353, Academic Press, New York.

    Google Scholar 

  • Dennis, E. A., 1987, Regulation of eicosanoid production: Role of phospholipases and inhibitors, Bio/ Technology 5:1294–1300.

    CAS  Google Scholar 

  • Dorman, R. V., Dabrowiecki, Z., De Medio G. E., Porcellati, G., and Horrocks, L. A., 1982, Effects of cytidine nucleotides on CNS membranes during ischemia, in “Head Injury: Basic and Clinical Aspects” (R. G. Grossman and R L. Gildenberg, eds.), pp. 93–101, Raven Press, New York.

    Google Scholar 

  • Douglas C. E., Chan, A. C., and Choy, P. C., 1986, Vitamin E inhibits platelet phospholipase A2, Biochim. Biophys. Acta 876:639–645.

    Article  PubMed  CAS  Google Scholar 

  • Edgar A. D., Strosznajder, J., and Horrocks, L. A., 1982, Activation of ethanolamine phospholipase A2 in brain during ischemia, J. Neurochem. 39:1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Enseleit W. H., Domer F. R., Jarrott D. M., and Baricos, W. H., 1984, Cerebral phospholipid content and Na, K-ATPase activity during ischemia and postischemic perfusion in the Mongolian gerbil, J. Neurochem. 43:320–327.

    Article  PubMed  CAS  Google Scholar 

  • Farber J. L., Chien K. R., and Mittnacht, S., Jr., 1981, The pathogenesis of irreversible cell injury in ischemia, Am. J. Pathol. 102:271–281.

    PubMed  CAS  Google Scholar 

  • Farias R. N., Blog, B., and Morero, R. D., 1975, Regulation of allosteric membrane-bound enzymes through changes in membrane lipid composition, Biochim. Biophys. Acta 415:231–239.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., and Horrocks, L. A., 1988, Methods for the determination of phospholipases, lipases and lysophospholipases, in “Neuromethods, Vol. 7, Lipids and Related Compounds” (A. A. Boulton, G. B. Baker, and L. A. Horrocks, eds.), pp. 179–209, Humana Press, Clifton, N. J.

    Google Scholar 

  • Farooqui A. A., Pendley C. E., III, Taylor W. A., and Horrocks, L. A., 1985, Studies on diacylglycerol lipases and lysophospholipases of bovine brain, in “Phospholipids in the Nervous System,” 2nd ed. (L. A. Horrocks, J. N. Kanfer, and G. Porcellati, eds.), pp. 179–192, Raven Press, New York.

    Google Scholar 

  • Farooqui A. A., Taylor W. A., and Horrocks, L. A., 1986, Membrane bound diacylglycerol lipases of bovine brain, in “Proceedings of Membrane Protein Symposium” (S. C. Goheen, ed.), pp. 729–746, Bio-Rad Laboratories, Richmond, Calif.

    Google Scholar 

  • Farooqui A. A., Farooqui, T., Yates A. J., and Horrocks, L. A., 1988, Regulation of protein kinase C activity by various lipids, Neurochem. Res. 13:499–511.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Rammohan K. W., Cheng, S., Kolattukudy, P., and Horrocks, L. A., 1989, Membrane bound diacylglycerol lipase in bovine brain: Purification, regulation and cDNA cloning, Frontiers in Chemistry Biotechnology, pp. 75–89, compiled by R. E. Strobaugh, Chemical Abstract Service, Columbus, Ohio.

    Google Scholar 

  • Flamm E. S., Demopoulos H. B., and Seligman, M. L., 1978, Free radicals in cerebral ischemia, Stroke 9:445–447.

    Article  PubMed  CAS  Google Scholar 

  • Flower, R. X., 1988, Lipocortin and the mechanism of action of the glucocorticoids, Br. J. Pharmacol. 94:987–1015.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, C. X., Farooqui A. A., and Horrocks, L. A., 1988, Ischemia, hypoxia, and edema, in “Basic Neurochemistry,” 4th ed. (G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), pp. 783–795, Raven Press, New York.

    Google Scholar 

  • Ford D. A., Hazen S. L., Saffitz J. E., and Gross, R. W., 1991, The rapid and reversible activation of a calcium-independent plasmalogen-selective phospholipase A2 during myocardial ischemia, J. Clin. Invest. 88:331–335.

    Article  PubMed  CAS  Google Scholar 

  • Fourcans, B., and Jain, M. K., 1974, Role of phospholipids in transport and enzymatic reactions, Adv. Lipid Res. 12:147–226.

    PubMed  CAS  Google Scholar 

  • Freysz, L., Golly, G., Avola, R., Dreyfus, H., and Massarelli, R., 1985, Metabolism of neuronal cell cultures: Modification induced by CDP-choline, in “Novel Biochemistry, Pharmacological and Clinical Aspects of Cytidinediphosphocholine” (V Zappia, E. R Kennedy, B. I. Nilsson, and R Galletti, eds.), pp. 117–129, Elsevier, New York.

    Google Scholar 

  • Gaudet R. J., Alam, I., and Levine, L., 1980, Accumulation of cyclooxygenase products of arachidonic and metabolism in gerbil brain during reperfusion after bilateral common carotid artery occlusion, J. Neurochem. 35:653–658.

    Article  PubMed  CAS  Google Scholar 

  • Goracci, G., Horrocks L. A., and Porcellati, G., 1977, Reversibility of ethanolamine and choline phosphotransferases (EC 2.7.8.1 and EC 2.7.8.2) in rat brain microsomes with labeled alkylacylglycerols, FEBS Lett. 80:41–44.

    Article  PubMed  CAS  Google Scholar 

  • Hagberg, H., Lehman, A., and Sandberg, M., 1985, Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments, J.Cereb. Blood Flow Metab. 5:413–418.

    Article  PubMed  CAS  Google Scholar 

  • Hall, E. D., 1988, Effect of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats, J.Neurosurg. 68:462–465.

    Article  PubMed  CAS  Google Scholar 

  • Hall E. D., and Braughler, J. M., 1987, The role of oxygen radical-induced lipid peroxidation in acute central nervous system-trauma, in “Proceedings of an Upjohn Symposium: Oxygen Radicals and Tissue Injury” (B. Halliwell, ed.), pp. 92–98, Upjohn, Kalamazoo, Mich.

    Google Scholar 

  • Hall E. D., and Yonkers, P. A., 1988, Attenuation of postischemic cerebral hypoperfusion by the 21-aminosteroid U74006F, Stroke 19:340–344.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., and Gutteridge, J. M. C., 1985, Oxygen radicals and the nervous system, Trends Neurosci. 8:22–27.

    Article  CAS  Google Scholar 

  • Harris, E. J., 1977, The uptake and release of calcium by heart mitochondria, Biochem. J. 168:447–456.

    PubMed  CAS  Google Scholar 

  • Hillered, L., and Chan, P. H., 1988, Role of arachidonic acid and other free fatty acids in mitochondrial dysfunction in brain ischemia, J.Neurosci. Res. 20:451–456.

    Article  PubMed  CAS  Google Scholar 

  • Hillered, L., and Chan, P. H., 1990, Effects of arachidonic acid on brain mitochondrial function, in “Lipid Mediators in Ischemic Brain Damage and Experimental Epilepsy. New Trends in Lipid Mediators Research,” vol. 4 (N. G. Bazan, ed.), pp. 190–202, Karger, Basel.

    Google Scholar 

  • Hirashima, Y., Koshu, K., Kamiyama, K., Nishijima, M., Endo, S., and Takaku, A., 1984, The activities of phospholipase Al, A2, lysophospholipase and acyl CoA: Lysophospholipid acyltransferase in ischemia dog brain, in “Recent Progress in the Study and Therapy of Brain Edema” (K. G. Go and A. Baethmann, eds.), pp. 213–221, Plenum Press, New York.

    Google Scholar 

  • Hirashima, Y., Moto, A., Endo, S., and Takaku, A., 1989, Activities of enzymes metabolizing phospholipid in rat cerebral ischemia, Mol. Chem. Neuropathol. 10:87–100.

    Article  PubMed  CAS  Google Scholar 

  • Hirashima, Y A., Takaku, A., Mills J. S., Farooqui A. A., and Horrocks, L. A., 1991, Purification and characterization of bovine brain cytosol phospholipase A2, J. Neurochem. 57:S115B (Abstract).

    Google Scholar 

  • Hirata, F., 1985, Receptor mediated cascade of phospholipid metabolism, in “Phospholipids in the Nervous System,” vol. 2 (L. A. Horrocks, J. N. Kanfer, and G. Porcellati, eds.), pp. 99–105, Raven press, New York.

    Google Scholar 

  • Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science 209:1082–1090.

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P. W., 1986, Defense strategies against hypoxia and hypothermia, Science 231:234–241.

    Article  PubMed  CAS  Google Scholar 

  • Hoffbrand, B. I., Bingley P. J., Oppenheimer S. M., and Sheldon, C. D., 1988, Trial of ganglioside GM1 in acute stroke, J Neurol. Neurosurg. Psychiatry 51:1213–1214

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L. A., and Dorman, R. V., 1985, Prevention by CDPcholine and CDPethanolamine of lipid changes during brain ischemia, in “Novel Biochemistry, Pharmacological and Clinical Aspects of Cytidinediphosphocholine” (V. Zappia, E. R Kennedy, B. I. Nilsson, and P. Galletti, eds.), pp. 205–215, Elsevier, New York.

    Google Scholar 

  • Horrocks L. A., Spanner, S., Mozzi, R., Fu, S. C., D’Amato R. A., and Krakowka, S., 1978, Plasmalogenase is elevated in early demyelinating lesions, Adv. Exp. Med. Biol. 100:423–438.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L. A., Dorman, R. V., Dabrowiecki, Z., Goracci, G., and Porcellati, G., 1981, CDPcholine and CDPethanolamine prevent the release of free fatty acids during brain ischemia, Prog. Lipid Res. 20:531–534.

    Article  PubMed  CAS  Google Scholar 

  • Hosobuchi, Y., Baskin D. S., and Woo, S. K., 1982, Reversal of induced ischemic neurologic deficit in gerbils by the opiate antagonist naloxone, Science 215:69–71.

    Article  PubMed  CAS  Google Scholar 

  • Hsueh, W., and Needleman, P., 1979, Cardiac and renal lipases and prostaglandin biosynthesis, Lipids 14:236–240.

    Article  PubMed  CAS  Google Scholar 

  • Janis R. A., and Triggle, D. J., 1983, New developments in Ca2+ channel antagonists, Med. Chem. 26: 775–785.

    Article  CAS  Google Scholar 

  • Jenkins, L., Marmarou, A., and Lewelt, W., 1986, Increased vulnerability of the traumatized brain to early ischemia, in “Mechanisms of Secondary Brain Damage” (A. Baethmann, ed.), pp. 273–286, Plenum Press, New York.

    Chapter  Google Scholar 

  • Kakihana, M., Fukuda, N., Suno, M., and Nagaoka, A., 1988, Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia, Stroke 19:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Karpiak S. E., Li Y. S., and Mahadik, S. P., 1987, Gangliosides (GM1 and AGF2) reduce mortality due to ischemia: Protection of membrane function, Stroke 18:184–187.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, H., and Yasuda, H., 1984, Platelet-activating factor stimulates phospholipase in quiescent Swiss mouse 3T3 fibroblast, FEBS Lett. 176:93–96.

    Article  PubMed  CAS  Google Scholar 

  • Kidooka, M., Matsuda, M., and Handa, J., 1987, Ca2+ antagonist and protection of the brain against ischemia, Surg. Neurol. 28:437–440.

    Article  PubMed  CAS  Google Scholar 

  • Klausner R. B., Kleinfeld A. M., Hoover R. L., Karnovsky, M. J., 1980, Lipid domains in membranes: Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis, J. Biol. Chem. 255:1286–1295.

    PubMed  CAS  Google Scholar 

  • Klee C. B., Crouch T. H., and Richman, P. G., 1980, Calmodulin, Annu. Rev. Biochem. 49:489–515.

    Article  PubMed  CAS  Google Scholar 

  • Kochhar, A., Saitoh, T., and Zivin, J., 1989, Reduced protein kinase C activity in ischemic spinal cord, J Neurochem. 53:946–952.

    Article  PubMed  CAS  Google Scholar 

  • Kontos H. A., Wei, E. P., Povlishock J. T., Dietrich W. D., Magiera C. J., and Ellis, E. F., 1980, Cerebral arteriolar damage by arachidonic acid and prostaglandin G2, Science 209:1242–1244.

    Article  PubMed  CAS  Google Scholar 

  • Louis, J.-C., Magal, E., and Yavin, E., 1988, Protein kinase C alterations in the fetal rat brain and global ischemia, J. Biol. Chem. 263:19282–19285.

    PubMed  CAS  Google Scholar 

  • Matsui, Y., Kubo, Y., and Iwata, N., 1987, S-Adenosyl-L-methionine prevents ischemic neuronal death, Eur. J. Pharmacol. 144:211–216.

    Article  PubMed  CAS  Google Scholar 

  • Matthys, E., Patel, Y., Kreisberg, J., Stewart J. H., and Venkatachalam, M., 1984, Lipid alterations induced by renal ischemia: Pathogenic factor in membrane damage, Kidney Int. 26:153–161.

    Article  PubMed  CAS  Google Scholar 

  • McDonald J. W., and Johnston, M. V., 1990, Physiological and pathophysiological roles of excitatory amino acids during central nervous system development, Brain Res. Rev. 15:41–70.

    Article  PubMed  Google Scholar 

  • Michell R. H., Allan, D., and Finean, J. B., 1976, Significance of minor glycerolipids in membrane structure and function, Adv. Exp. Med. Biol. 72:3–13.

    Article  PubMed  CAS  Google Scholar 

  • Moskowitz, N., Schook, W., and Pushkin, R., 1984, Regulation of endogenous calcium dependent synaptic membrane phospholipase A2, Brain Res. 290:273–279.

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233:305–312.

    Article  PubMed  CAS  Google Scholar 

  • Notsu, Y., Namiuchi, S., Hattori, T., Matsuda, K., and Hirata, F., 1985, Inhibition of phospholipases by Met-Leu-Phe-IIe-Lys-Arg-Ser-Arg-His-Phe, C terminus of middle sized tumor antigen, Arch. Biochem. Biophys. 236:195–204.

    Article  PubMed  CAS  Google Scholar 

  • Onodera, H., Araki, T., and Kogure, K., 1989, Protein kinase C activity in the rat hippocampus after forebrain ischemia: Autoradiographic analysis by [3H]phorbol 12,13-dibutyrate, Brain Res. 481: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Otani, H., Prasad M. R., Engelman R. M., Cordis G. A., and Das, D. K., 1988, Enhanced phosphodiesteratic breakdown and turnover of phosphoinositides during reperfusion of ischemic rat heart, Circ. Res. 63:930–936.

    Article  PubMed  CAS  Google Scholar 

  • Ozyurt, E., Graham D. I., Woodruff G. N., and McCulloch, J., 1988, Protective effect of the glutamate antagonist, MK-801, in focal cerebral ischemia in the cat, J. Cereb. Blood Flow Metab. 8:138–143.

    Article  PubMed  CAS  Google Scholar 

  • Park C. K., Nehls D. G., Graham D. I., Teasdale G. M., and McCulloch, J., 1988, Focal cerebral ischaemia in the cat: Treatment with the glutamate antagonist MK-801 after induction of ischaemia, J. Cereb. Blood Flow Metab. 8:757–762.

    Article  PubMed  CAS  Google Scholar 

  • Rehncrona, S., Mela, L., and Siesjö, B. K., 1979, Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia, Stroke 10:437–446.

    Article  PubMed  CAS  Google Scholar 

  • Rordorf, G., Vemura, Y., and Bonventie, J. V., 1991, Characterization of phospholipase A2 (PLA2) activity in gerbil brain: Enhanced activities of cystolic mitochondrial, and microsomal forms after ischemia and reperfusion, J. Neurosci. 11:1829–1836.

    PubMed  CAS  Google Scholar 

  • Rothman, S., 1984, Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death, J. Neurosci. Res. 4:1884–1891.

    CAS  Google Scholar 

  • Rothman S. M., and Olney, J. W., 1986, Glutamate and the pathophysiology of hypoxic-ischemic brain damage, Ann. Neurol. 19:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Sano, K., Asano, T., and Tanishima, T., 1980, Lipid peroxidation as a cause of cerebral vasospasm, Neuroscience 2:253–261

    CAS  Google Scholar 

  • Sato, H., Hariyama, H., and Moriguchi, K., 1988, S-adenosyl-L-methionine protects the hippocampal CA1 neurons from the ischemic neuronal death in rat, Biochem. Biophys. Res. Commun. 150: 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Schanne, E A., Kane A. B., Young E. E., and Farber, J., L., 1979, Calcium dependence of toxic cell death: A common pathway, Science 206:700–702.

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer D. D., and Haigler, H. T., 1987, Characterization of Ca2+ dependent phospholipid binding and phosphorylation of lipocortin-I, J. Biol. Chem. 262:6931–6937.

    PubMed  CAS  Google Scholar 

  • Schlaepfer W. W., and Zimmerman, U.-J. P., 1985, Mechanisms underlying the neuronal response to ischemic injury. Calcium-activated proteolysis of neurofilaments, Prog. Brain Res. 63:1–12.

    Google Scholar 

  • Sevanian, A., and Kim, E., 1986, Phospholipase A2 dependent release of fatty acids from peroxidized membrane, J. Free Radicals Biol. Med. 1:263–271

    Article  Google Scholar 

  • Siesjö, B. K., 1981, Cell damage in the brain: A speculative synthesis, J. Cereb. Blood Flow Metab. 1:155–185.

    Article  PubMed  Google Scholar 

  • Siesjö, B. K., 1984, Cerebral circulation and metabolism, J.Neurosurg. 60:883–908.

    Article  PubMed  Google Scholar 

  • Siesjö, B. K., 1986, Calcium and ischemic brain damage, Eur. Neurol. 25:45–56.

    Article  PubMed  Google Scholar 

  • Siesjö, B. K., and Wieloch, T., 1985, Cerebral metabolism in ischaemia: Neurochemical basis for therapy, Br. J. Anaesth. 57:47–62

    Article  PubMed  Google Scholar 

  • Siesjö, B. K., 1990, Calcium in the brain under physiological and pathological conditions, Eur. Neurol. 30:3–9.

    PubMed  Google Scholar 

  • Simon, M. F., Clap, H., and Douste-Blazy, L., 1986, Selective inhibition of human platelet phospholipase A2 by buffering cytoplasmic calcium with the fluorescent indicator quin-2: Evidence for different calcium sensitivities for phospholipases A2 and C, Biochim. Biophys. Acta 875: 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Solomonson L. P., Leipkalns V. A., and Spector, A. A., 1976, Changes in (Na+ + K+)-ATPase activity of Ehrlich ascites tumor cells produced by alteration of membrane fatty acid composition, Biochemistry 15:892–897

    Article  PubMed  CAS  Google Scholar 

  • Sun, G. Y., and Foudin, L. L., 1984, On the status of lysolecithin in rat cerebral cortex during ischemia, J. Neurochem. 43:1081–1086.

    Article  PubMed  CAS  Google Scholar 

  • Toffano, G., Savoini, G., Moroni, F., Lombardi, G., Calza, L., and Agnati, L. F., 1983, GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system, Brain Res. 261:163–166.

    Article  PubMed  CAS  Google Scholar 

  • Trovarelli, G., De Medio G. E., Dorman, R. V., Piccinin G. L., Horrocks L. A., and Porcellati, G., 1981, Effect of cytidine diphosphate choline (CDP-choline) on ischemia-induced alterations of brain lipid in the gerbil, Neurochem. Res. 6:821–833.

    Article  PubMed  CAS  Google Scholar 

  • Trovarelli, G., De Medio G. E., Porcellati, S., Stramentinoli, G., and Porcellati, G., 1983, The effect of S-adenoysl-L-methionine on ischemia-induced disturbances of brain phospholipid in the gerbil, Neurochem. Res. 8:1597–1609.

    Article  PubMed  CAS  Google Scholar 

  • van Scharrenburg, G. J. M., Slotboom A. J., de Haas G. H., Mulqueen, P., Breen, R J., and Horrocks, D. W., 1985, Catalytic Ca2+-binding site of pancreatic phospholipase A2: Laser-induced Eu3+ luminescence, Biochemistry 24:334–339.

    Article  PubMed  Google Scholar 

  • Watson B. D., and Ginsberg, M. D., 1988, Mechanisms of lipid peroxidation potentiated by ischemia in brain, in “Proceedings of an Upjohn Symposium: Oxygen Radicals and Tissue Injury,” (B. Halliwell, ed.), pp. 81–91, Upjohn, Kalamazoo, Mich.

    Google Scholar 

  • Watson B. D., Busto, R., and Goldberg, W. J., 1984, Lipid peroxidation in vivo induced by reversible global ischemia in rat brain, J. Neurochem. 42:268–274.

    Article  PubMed  CAS  Google Scholar 

  • Wei, E. P., Kontos H. A., and Dietrich, W D., 1981, Inhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats, Circ. Res. 48:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Welch, K. M. A., and Barkley, G. L., 1986, Biochemistry and pharmacology of cerebral ischemia, in “Stroke: Pathophysiology, Diagnosis and Management,” vol. 1 (H. J. M. Barnett, B. M. Stein, J. R Mohr, and F. M. Yatsu, eds.), pp. 75–90, Churchill Livingstone, New York.

    Google Scholar 

  • Weltzien, H. U., 1979, Cytolytic and membrane-perturbing properties of lysophosphatidylcholine, Biochim. Biophys. Acta 559:259–287.

    Article  PubMed  CAS  Google Scholar 

  • Westerberg, E., Kehr, J., Ungerstedt, U., and Wieloch, T., 1988, The NMDA-antagonist MK-801 reduces extracellular amino acid levels during hypoglycemia and prevents striatal damage, Neurosci. Res. Commun. 3:151–158.

    CAS  Google Scholar 

  • White, B.C., Winegar C. D., Wilson, R. F., Hoehner P. J., and Trombley J. H., Jr., 1983, Possible role of calcium blockers in cerebral resuscitation: A review of the literature and synthesis for future studies, Crit. Care Med. 11:202–207.

    Article  PubMed  CAS  Google Scholar 

  • Wieloch, T., 1985, Neurochemical correlates to regional selective neuronal vulnerability, Prog. Brain Res. 63:69–85.

    Article  PubMed  CAS  Google Scholar 

  • Wojtczak, L., 1976, Effect of long-chain fatty acids and acyl-CoA on mitochondrial permeability, transport and energy coupling processes, J. Bioenerg. Ser. B. 8:293–301.

    CAS  Google Scholar 

  • Wong, E. H. F., Kemp J. A., Priestley, T., Knight A. R., Woodruff G. N., and Iversen, L. L., 1986, The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist, Proc. Natl. Acad. Sci. USA 83:7104–7108.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, M., Shima, T., Uozumi, T., Sogabe, T., Yamada, K., and Kawasaki, T., 1983, A possible role of lipid peroxidation in cellular damages caused by cerebral ischemia and the protective effect of ?-tocopherol administration, Stroke 14:977–982.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, S., Abe, K., Busto, R., Watson B. D., Kogure, K., and Ginsberg, M. D., 1982, Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain, Brain Res. 245:307–316.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, S., Busto, R., Watson B. D., Santiso, M., and Ginsberg, M. D., 1985, Postischemic cerebral lipid peroxidation in vitro: Modification by dietary vitamin E, J. Neurochem. 44:1593–1601.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, S., Ideda, M., Busto, R., Santiso, M., Martinez, E., and Ginsberg, M. D., 1986, Cerebral phosphoinositide, triacylglycerol, and energy metabolism in reversible ischemia: Origin and fate of free fatty acids, J. Neurochem. 47:744–757.

    Article  PubMed  CAS  Google Scholar 

  • Young, W., Wojak, J. C., and DeCrescito, V., 1988, 21-Aminosteroid reduces ion shifts and edema in the rat middle cerebral artery occlusion model of regional ischemia, Stroke 19:1013–1019.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farooqui, A.A., Hirashima, Y., Farooqui, T., Horrocks, L.A. (1992). Involvement of Calcium, Lipolytic Enzymes, and Free Fatty Acids in Ischemic Brain Trauma. In: Bazan, N.G., Braquet, P., Ginsberg, M.D. (eds) Neurochemical Correlates of Cerebral Ischemia. Advances in Neurochemistry, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3312-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3312-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6458-0

  • Online ISBN: 978-1-4615-3312-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics