Skip to main content

Part of the book series: Advances in Neurochemistry ((ANCH,volume 7))

Abstract

In the brain, as in many other tissues, the delivery of oxygen is highly regulated and the tissue oxygen pressure is normally maintained within a narrow range. Periods of hypoxia and/or ischemia followed by reoxygenation/reperfusion present a complex series of stresses to cellular and vascular physiology. Depending on the duration and severity of the initial period of hypoxia/ischemia and the succeeding reoxygenation protocol, there are various degrees of irreversible damage to cells. The primary cause of the damage is oxygen deprivation, which results in a deficiency in the metabolic energy available for cellular maintenance and repair. Energy-deprived cells in the central nervous system (CNS) first undergo progressive dissipation of the cellular ionic balance, including a very rapid (seconds) increase in intracellular Na+ levels and decrease in intracellular K+ levels, membrane depolarization with attendant increased intracellular Ca2+ levels, and release of neurotransmitters such as the excitatory amino acids. After longer periods (minutes) there is progressive lipolysis and proteolysis. In the first minutes of this process it may be fully reversible, and reoxygenation leads to essentially complete recovery. As the duration of the hypoxic/ischemic episode increases, however, the extent of recovery progressively decreases. The physiological basis for the irreversible component of the recovery remains poorly understood, although it has been reported that hyperglycemia exacerbates the damage (Meyers and Yamaguchi, 1977; Rehncrona et al., 1981; Welsh et al., 1983) and that many factors, including excitatory amino acid neurotransmitters released during the hypoxic episode (see, for example Olney [1978]; Watkins and Evans [1981]) and oxygen radicals produced during reperfusion, may be important contributors to the lack of recovery (Siesjö, 1981; Bazan and Rodriguez de Thrco, 1980; Yoshida et al., 1980). The present review will focus on the initial metabolic consequences of oxygen depravation in the eNS and will highlight only key elements of the more complex recovery process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., Kogure, K., Yamamoto, H., Imazawa, M., and Miyamoto, K., 1987, Mechanism of arachidonic acid liberation during ischemia in gerbil brain, J. Neurochem. 48:503–509.

    Article  PubMed  CAS  Google Scholar 

  • Aveldano de Caldironi, M., and Bazan, N. G., 1975, Rapid production of diacylglycerols enriched in arachidonate and stearate during early brain ischemia, J. Neurochem. 25:919–920.

    Article  Google Scholar 

  • Bazan, N. G., 1970, Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain, Biochim. Biophys. Acta. 218:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G., and Rodriguez de Turco, E. B., 1980, Membrane lipids in the pathogenesis of brain edema: Phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia, Adv. Neurol. 28:197–205.

    PubMed  CAS  Google Scholar 

  • Brandt, L., Ljunggren, B., Anderson K. A., Edvinsson, L., MacKenzie, E., Tamura, A., and Teasdale, G., 1983, Effects of topical application of a calcium antagonist (nifedipine) on feline cortical pial microvascular diameter under normal conditions and in focal ischemia, J. Cereb. Blood Flow Metab. 3:44–50.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A., Jr., and Clark, P A. A., 1985, Local oxygen gradients near isolated mitochondria, Biophys. J. 48:931–938.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A., Jr., Clark, P A. A., Connett R. J., Gayeski, T. E. J., and Honig, C. R., 1987, How large is the drop in PO2 between cytosol and mitochondrion? Am. J. Physiol.

    Google Scholar 

  • Degn, H., and Wohlrab, H., 1971, Measurement of steady-state values of respiratory rate and oxidation levels of respiratory pigments at low oxygen tensions: A new technique, Biochim. Biophys. Acta 245:347–355.

    Article  PubMed  CAS  Google Scholar 

  • Edgar A. D., Strosznajder, J., and Sun, G. Y., 1982, Activation of ethanolamine phospholipase A2 in brain during ischemia, J. Neurochem. 39:1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Erecinska, M., Wantorski, D., and Wilson, D. F., 1983, Aspartate transport in synaptosomes from rat brain, J. Biol. Chem. 258:9067–9077.

    Google Scholar 

  • Garcia J. H., Lowry S. L., and Briggs, L., 1983, Brain capillaries expand and rupture in areas of ischemia and reperfusion, in Cerebrovascular Diseases. Thirteenth Research (Princeton) Conference (M. Reivich and H. I. Hurtig, eds.), pp. 169–179, Raven Press, New York.

    Google Scholar 

  • Gayeski T. E., and Honig, C. R., 1986, O2 gradients from the sarcolemma to cell interior in red muscle at maximal V02, Am. J. Physiol. 251:H789–H799.

    PubMed  CAS  Google Scholar 

  • Ginsberg M. D., Budd W. W., and Welsh, F., 1978, Diffuse cerebral ischemia in the cat. 1. Local blood flow during severe ischemia and recirculation, Ann. Neurol. 3:482–492.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks, L. A., 1985, Metabolism and function of fatty acids in brain, in “Phospholipids in Nervous Tissue” (J. Eichberg, ed.), pp. 173–199, John Wiley & Sons, New York.

    Google Scholar 

  • Jones, D. P., 1984, Effect of mitochondrial clustering on O2 supply in hepatocytes, Am. J. Physiol. 247: C83–C89.

    PubMed  CAS  Google Scholar 

  • Jones, D. P., 1986, Intracellular diffusion gradients of O2 and ATP, Am. J. Physiol. 250:C663–C675.

    PubMed  CAS  Google Scholar 

  • Jones, D. P., and Kennedy, E G., 1982, Intracellular oxygen supply during hypoxia, Am. J. Physiol. 243:C247–C253.

    PubMed  CAS  Google Scholar 

  • Kågström, E., Smith, M.-L., and Siesjö, B. K., 1983a, Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat, J. Cereb. Blood Flow Metab. 3:170–182.

    Article  PubMed  Google Scholar 

  • Kågström, E., Smith, M.-L., and Siesjö, B. K., 1983b, Recirculation in the rat brain following incomplete ischemia, J. Cereb. Blood Flow Metab. 3:183–192.

    Article  PubMed  Google Scholar 

  • Katz I. R., Wittenberg J. B., and Wittenberg, B. A., 1984, Monoamine oxidase, an intracellular probe of oxygen pressure in isolated cardiac myocytes, J. Biol. Chem. 259:7504–7509.

    PubMed  CAS  Google Scholar 

  • Marcy V. R., and Welsh, E A., 1984, Correlation between cerebral blood flow and ATP content following tourniquet-induced ischemia in cat brain, J Cereb. Blood Flow Metab. 4:362–367.

    Article  PubMed  CAS  Google Scholar 

  • Marion, J., and Wolfe, L. S., 1979, Origin of arachidonic acid release post mortem in the rat forebrain, Biochim. Biophys. Acta 547:25–32.

    Google Scholar 

  • Meyers R. E., and Yamaguchi, S., 1977, Nervous system effects of cardiac arrest in monkeys, Arch. Neurol. 34:65–74.

    Article  Google Scholar 

  • Moskalenko, Y. Y., 1975, Regional cerebral blood flow and its control at rest and during increased functional activity, in “Brain Work” (D. H. Ingvar and H. A. Lassen, eds.), pp. 133–141, Munskgaard, Copenhagen, Denmark.

    Google Scholar 

  • Nuutinen E. M., Nishiki, K., Erecinska, M., and Wilson, D. F., 1982, Role of mitochondrial oxidative phosphorylation in regulation of coronary blood flow, Am. J. Physiol. 243:H157–H169.

    Google Scholar 

  • Nuutinen E. M., Nelson, D., Wilson, D. F., and Erecinska, M., 1983, Regulation of coronary blood flow: Effects of 2,4-dinitrophenol and theophylline, Am. J. Physiol. 244:H396–H405.

    PubMed  CAS  Google Scholar 

  • Olney, J. W., 1978, Neurotoxicity of excitatory amino acids, in “Kainic Acid as a Tool in Neurobiology” (R. G. McGeer, J. W Olney, and R L. McGeer, eds.), pp. 95–121, Raven Press, New York.

    Google Scholar 

  • Oshino, N., Sugano, T., Oshino, R., and Chance, B., 1974, Mitochondrial function under hypoxic conditions: The steady states of cytochromes a + a3 and their relation to mitochondrial energy states, Biochim. Biophys. Acta 368:298–310.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, L. C., Nicholls, P., and Degn, H., 1974, The effect of energization on the apparent Michaelis-Menten constant for oxygen in mitochondrial respiration, Biochem. J. 142:249–252.

    Google Scholar 

  • Pulsinelli W. A., Waldman, S., Rawlinson, D., and Plum, F., 1982, Moderate hyperglycemia augments ischemic brain damage: A neuropathological study in the rat, Neurology 32:1239–1246.

    Article  PubMed  CAS  Google Scholar 

  • Rehncrona, S., Rosen, I., and Siesjö, B. K., 1981, Brain lactic acidosis and ischemic cell damage.1. Biochemistry and neurophysiology, J.Cereb. Blood Flow Metab. 1:297–311.

    Article  PubMed  CAS  Google Scholar 

  • Robiolio, M., Rumsey W. L., and Wilson, D. F., 1989, Oxygen diffusion and mitochondrial respiration in neuroblastoma cells, Amer. J. Physiol. 256:C1207–C1213.

    PubMed  CAS  Google Scholar 

  • Siesjö, B. K., 1981, Cell damage in the brain: A speculative synthesis, J. Cereb. Blood Flow Metab. 1: 155–185.

    Article  PubMed  Google Scholar 

  • Silver, I. A., 1976, Tissue response to hypoxia, stroke and shock, Adv. Exp. Med. Biol. 75:325–334.

    PubMed  CAS  Google Scholar 

  • Silver, I. A., 1977, Ion fluxes in hypoxic tissues, Microvasc. Res. 13:409–420.

    Article  PubMed  CAS  Google Scholar 

  • Silver, I. A., 1978, Cellular microenvironment in relation to local blood flow, Ciba Found. Symp. 56: 49–67.

    PubMed  Google Scholar 

  • Steen, PA., Milde J. H., and Michenfelder, J. D., 1978, Cerebral metabolic and vascular effects of barbituate therapy following complete global ischemia, J. Neurochem. 31:1317–1324.

    Article  PubMed  CAS  Google Scholar 

  • Sugano, T., Oshino, N., and Chance, B., 1974, Mitochondrial functions under hypoxic conditions: The steady states of cytochrome c reduction and of energy metabolism, Biochim. Biophys. Acta 347: 340–358.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Dora, E., Greenberg J. H., and Reivich, M., 1986, Cerebral glucose metabolism during the recovery period after ischemia: Its relationship to NADH-fluorescence, blood flow, EcoG and histology, Stroke 17:994–1004.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, J. C., and Evans, R. H., 1981, Excitatory amino acid transmitters, Annu. Rev. Pharmacol. Toxicol. 21:165–204.

    Article  PubMed  CAS  Google Scholar 

  • Watson B. D., Busto, R., Goldberg, W J., Santiso, S., Yoshida, S., and Ginsberg, M. D., 1984, Lipid peroxidation in vivo induced by reversible global ischemia in rat brain, J. Neurochem 23:268–274.

    Article  Google Scholar 

  • Wei, E. P., Lamb R. G., and Kontos, H. A., 1982, Increased phospholipase C activity after experimental brain injury, J. Neurosurg. 56:695–698.

    Article  PubMed  CAS  Google Scholar 

  • Welsh, E A., Sims R. E., and McKee, A. E., 1983, Effect of glucose on recovery of energy metabolism following hypoxia-oligemia in mouse brain: Dose-dependent and carbohydrate specificity, J. Cereb. Blood Flow Metab. 3 486–492.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. F., 1982, Regulation of in vivo mitochondrial oxidative phosphorylation, in “Membranes and Transport, vol. 1” (A. Martonosi, ed.), pp. 349–355, Plenum Press, New York.

    Chapter  Google Scholar 

  • Wilson, D. F., and Erecinska, M., 1985, Effect of oxygen concentration on cellular metabolism, Chest 88:229–232.

    Article  Google Scholar 

  • Wilson, D. F., and Pastuszko, A., 1986, Transport of cysteate by synaptosomes isolated from rat brain: Evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate, J. Neurochem. 47:1091–1097.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. F., Erecinska, M., Drown, C., and Silver, I. A., 1979a, The oxygen dependence of cellular energy metabolism, Arch. Biochem. Biophys. 195:485–493.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. F., Owen C. D., and Erecinska, M., 1919b Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: A mathematical model, Arch. Biochem. Biophys. 195:494–504.

    Article  Google Scholar 

  • Wilson, D. F., Rumsey W. L., Green T. J., and Vanderkooi, J. M., 1988, The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration, J. Biol. Chem. 263:2712–2718.

    PubMed  CAS  Google Scholar 

  • Wittenberg B. A., and Wittenberg, J. B., 1985, Oxygen pressure gradients in isolated cardiac myocytes, J.Biol. Chem. 260:6548–6554.

    PubMed  CAS  Google Scholar 

  • Yoshida, S., Inoh, S., Asano, T., Sano, K., Shimizaki, H., and Ueta, N., 1980, Effect of transient ischemia on free fatty acid levels and phospholipids in the gerbil brain. Lipid peroxidation as possible cause of post ischemic injury, J. Neurosurg. 53:323–331.

    Article  PubMed  CAS  Google Scholar 

  • Zaleska, M., and Wilson, D. F., 1989, Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes, J. Neurochem. 52:255–260.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, D.F. (1992). Oxygen Dependence of Neuronal Metabolism. In: Bazan, N.G., Braquet, P., Ginsberg, M.D. (eds) Neurochemical Correlates of Cerebral Ischemia. Advances in Neurochemistry, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3312-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3312-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6458-0

  • Online ISBN: 978-1-4615-3312-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics