Skip to main content

Disturbances of Protein and Polyamine Metabolism After Eversible Cerebral Ichemia

  • Chapter
Neurochemical Correlates of Cerebral Ischemia

Part of the book series: Advances in Neurochemistry ((ANCH,volume 7))

Abstract

The high sensitivity of the brain to ischemia is generally attributed to the misrelationship between the high metabolic demands and the low energy reserves of this organ. In fact, complete cessation of blood flow in the nonanesthetized normothermic brain leads to complete depletion of energy reserves and a cessation of all endergonic metabolic processes within less than 5 min (Lowry et al., 1964). However, experimental observations from our and other laboratories have clearly established that this process is not irreversible. Provided that a no-reflow can be prevented, reoxygenation of the brain will result in a reactivation of energy metabolism after complete cerebrocirculatory arrest of as long as 1 hr (Hossmann and Kleihues, 1973; Pluta, 1987). However, it has also been shown that the recovery of energy metabolism correlates closely with the restoration of the electrophysiological function of the brain (Schmidt-Kastner et al., 1986). Most ischemic experiments exceeding a duration of 5 to 10 min nevertheless result in more or less severe brain injury when the animals are allowed to survive for some time (Siesjö, 1988b). The foci of ischemic cell injury are accentuated in the so-called selectively vulnerable areas of the brain, i.e., the third layer of the cerebral cortex, hippocampal subfields CA1 and CA4, the dorsolateral aspect of the striate nucleus, and, under conditions of hyperglycemia, the pars reticulata of the substantia nigra (Pulsinelli et al., 1982; Kirino and Sano, 1984; M. L. Smith et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai, H., Passonneau, J. V., and Lust, W. D., 1986, Energy metabolism in delayed neuronal death of CA1 neurons of the hippocampus following transient ischemia in the gerbil, Metab. Brain Dis. 1: 263–278.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem. 43:1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Bodsch, W., Takahashi, K., Barbier, A., Grosse Ophoff, B., and Hossmann, K.-A., 1985, Cerebral protein synthesis and ischemia, Prog. Brain Res. 63:197–210.

    Article  PubMed  CAS  Google Scholar 

  • Bodsch, W., Barbier, A. Oehmichen, M., Grosse Ophoff, B., and Hossmann, K.-A., 1986, Recovery of monkey brain after prolonged ischemia, J. Cereb. Blood Flow Metab. 6:22–33.

    Article  PubMed  CAS  Google Scholar 

  • Bondy, S. C., and Walker, C. H., 1986, Polyamines contribute to calcium-stimulated release of aspartate from brain particulate fraction, Brain Res. 371:96–100.

    Article  PubMed  CAS  Google Scholar 

  • Burda, J., Chavko, M., and Marsala, J., 1980, Changes in ribosomes from ischemic spinal, Coll. Czech. 45:2566–2571.

    CAS  Google Scholar 

  • Canellakis E. S., Viceps-Madore, D., Kyriakidis D. A., and Heller, J. S., 1979, The regulation and function of ornithine decarboxylase and of the polyamines, Curr. Top. Cell. Regul. 15:155–202.

    PubMed  CAS  Google Scholar 

  • Choi, D. W., 1985, Glutamate neurotoxicity in cortical cell cultures is calcium dependent, Neurosci. Lett. 58:293–297.

    Article  PubMed  CAS  Google Scholar 

  • Clark-Walker, G. D., 1973, Translation of messenger RNA, in “The Ribonucleic Acids” (P. R. Stewart and D. S. Letham, eds.), pp. 135–149, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Cooper H. K., Zalewska, T., Kawakami, S., Hossmann, K.-A., and Kleihues, P., 1977, The effect of ischaemia and recirculation on protein synthesis in the rat brain, J. Neurochem. 28:929–934.

    Article  PubMed  CAS  Google Scholar 

  • Cousin M. A., Lando, D., and Moguilewsky, M., 1982, Ornithine decarboxylase induction by glucocorticoids in brain and liver of adrenalectomized rats, J. Neurochem. 38:1296–1304.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey R. J., Roy, M. W., Meyer, K., Tai H. H., and Olson, J. W., 1985, Polyamine and prostaglandin markers in focal cerebral ischemia, Neurosurgery 17:635–640.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey R. J., Maley B. E., Cowen, D., and Olson, J. W., 1988, Ornithine decarboxylase activity and immunohistochemical location in postischemic brain, J. Cereb. Blood Flow Metab. 8:843–847.

    Article  PubMed  CAS  Google Scholar 

  • Dienel G. A., and Cruz, N. E., 1984, Induction of brain ornithine decarboxylase during recovery from metabolic, mechanical, thermal or chemical injury, J.Neurochem. 42:1053–1061.

    Article  PubMed  CAS  Google Scholar 

  • Dienel G. A., Pulsinelli, W A., and Duffy, T. E., 1980, Regional protein synthesis in rat brain following acute hemispheric ischemia, J. Neurochem. 35:1216–1226.

    Article  PubMed  CAS  Google Scholar 

  • Dienel G. A., Cruz, N. E., and Rosenfeld, S. J., 1985, Temporal profiles of proteins responsive to transient ischemia, J. Neurochem. 44:600–610.

    Article  PubMed  CAS  Google Scholar 

  • Dienel G. A., Kiessling, M., Jacewicz, M., and Pulsinelli, W. A., 1986, Synthesis of heat shock proteins in rat brain cortex after transient ischemia, J. Cereb. Blood Flow Metab. 6:505–510.

    Article  PubMed  CAS  Google Scholar 

  • Djuricic B. M., Paschen, W., and Schmidt-Kastner, R., 1988, Polyamines in the brain: HPLC analysis and its application in cerebral ischemia, Jugosl. Physiol. Pharmacol. Acta 24:9–17.

    Google Scholar 

  • Gilad G. M., and Gilad, V.H., 1983, Early rapid and transient increase in ornithine decarboxylase activity within sympathetic neurons after axonal injury, Exp. Neurol. 81:158–166.

    Article  PubMed  CAS  Google Scholar 

  • Hallmayer, J., Hossmann, K.-A., and Mies, G., 1985, Low dose of barbiturates for prevention of hippocampal lesions after brief ischemic episodes, Acta Neuropathol. 68:27–31.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, J. F., Becker R. A., and Cohen, M. M., 1973, Cerebral ultrastructure in experimental hypoxia and ischemia, Monogr. Neurol. Sci. 1:50–64.

    CAS  Google Scholar 

  • Heby, O., 1981, Role of polyamines in the control of cell proliferation and differentiation, Differentiation 19:1–20.

    Article  PubMed  CAS  Google Scholar 

  • Hossmann, K.-A., 1985, Post-ischemic resuscitation of the brain: Selective vulnerability versus global resistance, Prog. Brain Res. 63:3–17.

    Article  PubMed  CAS  Google Scholar 

  • Hossmann, K.-A., and Kleihues, P., 1973, Reversibility of ischemic brain damage, Arch. Neurol. 29: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Hossmann, K.-A., Schmidt-Kastner, R., and Grosse Ophoff, B., 1987, Recovery of integrative central nervous function after one hour global cerebro-circulatory arrest in normothermic cat, J. Neurol. Sci. 77:305–320.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal, Z., and Koenig, N. H., 1985, Polyamines appear to be second messengers in mediating Ca2+ fluxes and neurotransmitter release in potassium-stimulated synaptosomes, Biochem. Biophys. Res. Commun. 133:563–573.

    Article  PubMed  CAS  Google Scholar 

  • Jacewicz, M., Kiessling, M., and Pulsinelli, W. A., 1985, Selective gene expression in focal cerebral ischemia, Ann. Neurol. 18:126.

    Google Scholar 

  • Jänne, J., Pösö, H., and Raina, A., 1979, Polyamine in rapid growth and cancer, Biochim. Biophys. Acta 473:241–293.

    Google Scholar 

  • Kiessling, M., Dienel G. A., Jacewicz, M., and Pulsinelli, W. A., 1986, Protein synthesis in postischemic rat brain: A two-dimensional electrophoretic analysis, J. Cereb. Blood Flow Metab. 6:642–649.

    Article  PubMed  CAS  Google Scholar 

  • Kirino, T., 1982, Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res. 239:57–69.

    Article  PubMed  CAS  Google Scholar 

  • Kirino, T., and Sano, K., 1984, Selective vulnerability in the gerbil hippocampus following transient ischemia, Acta Neuropathol. 62:201–208.

    Article  PubMed  CAS  Google Scholar 

  • Kleihues, P., and Hossmann, K.-A., 1971, Protein synthesis in the cat brain after prolonged cerebral ischemia, Brain Res. 35:409–418.

    Article  PubMed  CAS  Google Scholar 

  • Kleihues, P., Hossmann, K.-A., Pegg A. E., Kobayashi, K., and Zimmermann, V., 1975, Resuscitation of the monkey brain after one hour complete ischemia. III. Indications of metabolic recovery, Brain Res. 95:61–73.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, H., Goldstone, A., and Lu, C. Y., 1983a, Polyamines regulate calcium fluxes in a rapid membrane response, Nature (London) 305:530–534.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, H., Goldstone, A., and Lu, C. Y., 1983b, β-Adrenergic stimulation of Ca2+-fluxes, endocytosis, hexose transport, and amino acid transport in mouse kidney is mediated by polyamine synthesis, Proc. Natl. Acad. Sci. USA 80:7210–7214.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, H., Goldstone, A., and Lu, C. Y., 1983c, Blood brain barrier breakdown in brain edema following cold injury is mediated by microvascular polyamines, Biochem. Biophys. Res. Commun. 116:1039–1048.

    Article  PubMed  CAS  Google Scholar 

  • Koenig, K., Goldstone A. D., and Lu, C. Y., 1989, Blood-brain barrier breakdown in cold-injured brain is linked to biphasic stimulation of ornithine decarboxylase and polyamine synthesis: Both are coordinately inhibited by verapamil, dexamethasone, and aspirin, J. Neurochem. 52: 101–109.

    Article  PubMed  CAS  Google Scholar 

  • Komulainen, H., and Bondy, S. C., 1987, Transient elevation of intrasynaptosomal free calcium by putrescine, Brain Res. 401:50–54.

    Article  PubMed  CAS  Google Scholar 

  • Lewis M. E., Lakshamanan, K., Nagaiah, K., MacDonnell, P.C., and Guroff, G., 1978, Nerve growth factor increases activity of ornithine decarboxylase in rat brain, Proc. Natl. Acad. Sci. USA 75: 1021–1023.

    Article  PubMed  CAS  Google Scholar 

  • Louis, J.-C., Magal, E., and Yavin, E., 1988, Protein kinase C alterations in the fetal rat brain after global ischemia, J. Biol. Chem. 263:19282–19285.

    PubMed  CAS  Google Scholar 

  • Lowry O. H., Passonneau, J. V., Hasselberger F. X., and Schulz, D. W., 1964, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239:18–30.

    PubMed  CAS  Google Scholar 

  • Mies, G., Paschen, W., Hossmann, K.-A., and Klatzo, I., 1983, Simultaneous measurement of regional blood flow and metabolism during maturation of hippocampal lesions following short-lasting cerebral ischemia in gerbils, J. Cereb. Blood Flow Metab. 3(Suppl. 1):S329–S330.

    Google Scholar 

  • Munekata, K., Hossmann, K.-A., Xie, Y., Seo, K., Oschlies, U., 1987, Selective vulnerability of hippocampus: Ribosomal aggregation, protein synthesis, and tissue pH, in “Cerebrovascular Diseases” (M. E. Raichle and W. J. Powers, eds.), pp. 107–118, Raven Press, New York.

    Google Scholar 

  • Nistico, G., Jentile, R., Rotiroti, D., and Di Giorgio, R. M., 1980, GABA depletion and behavioral changes produced by intraventricular putrescine in chicks, Biochem. Pharmacol. 29:954–957.

    Article  PubMed  CAS  Google Scholar 

  • Nowak T. S., Jr., 1985, Synthesis of a stress protein following transient ischemia in the gerbil, J.Neurochem. 45:1635–1641.

    Article  PubMed  CAS  Google Scholar 

  • Nowak T. S., Jr., 1988, NMDA-receptor antagonist MK-801 blocks postishemic HSP70 induction: Evidence that the heat shock (stress) response is a component of excitotoxic pathology in gerbil hippocampus, J. Neuropathol. Exp. Neurol. 47:363.

    Google Scholar 

  • Nowak T. S., Jr., Fried R. L., Lust W. D., and Passonneau, J. V., 1985, Changes in brain energy metabolism and protein synthesis following transient bilateral ischemia in the gerbil, J. Neurochem. 44:487–494.

    Article  PubMed  CAS  Google Scholar 

  • Paschen, W., Schmidt-Kastner, R., Djuricic, B., Meese, C., Linn, F., and Hossmann, K. A., 1987a, Polyamine changes in reversible cerebral ischemia, J. Neurochem. 49:35–37.

    Article  PubMed  CAS  Google Scholar 

  • Paschen, W., Hallmayer, J., and Mies, G., 1987b, Regional profile of polyamines in reversible cerebral ischemia of Mongolian gerbils, Neurochem. Pathol. 7:143–156.

    Article  PubMed  CAS  Google Scholar 

  • Paschen, W., Röhn, G., Meese C. O., Djuricic, B., and Schmidt-Kastner, R., 1988a, Polyamine metabolism in reversible cerebral ischemia: Effect of α-difluoromethylornithine, Brain Res. 453: 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Paschen, W., Hallmayer, J., and Röhn, G., 1988b, Relationship between putrescine content and density of ischemic cell damage in the brain of mongolian gerbils: Effect of nimodipine and barbiturate, Acta Neuropathol. 76:388–394.

    Article  PubMed  CAS  Google Scholar 

  • Paschen, W., Hallmayer, J., and Röhn, G., 1988c, Regional changes of polyamine profiles after reversible cerebral ischemia in Mongolian gerbils: Effects of nimodipine and barbiturate, Neurochem. Pathol. 8:27–41.

    CAS  Google Scholar 

  • Paschen, W., Röhn, G., Hallmayer, J., and Mies, G., 1988d, Polyamine metabolism in reversible cerebral ischemia of Mongolian gerbils, Metab. Brain Dis. 3:297–302.

    Article  PubMed  CAS  Google Scholar 

  • Paschen, W., Schmidt-Kastner, R., Hallmayer, J., and Djuricic, B., 1988e, Polyamines in cerebral ischemia, Neurochem. Pathol. 9:1–20.

    PubMed  CAS  Google Scholar 

  • Paschen, W., Röhn, G., Kocher, M., and Hallmayer, J., 1989, Disturbances in polyamine metabolism in reversible cerebral ischemia, New Trends in Clin. Neuropharmacol. 3:99.

    Google Scholar 

  • Pegg, A. E., 1986, Recent advantages in the biochemistry of polyamines in eukaryotes, Biochem. J. 234:249–262.

    PubMed  CAS  Google Scholar 

  • Pegg A. E., and McCann, P. P., 1982, Polyamine metabolism and function, Am. J. Physiol. 243:C212–C221.

    PubMed  CAS  Google Scholar 

  • Pegg A. E., Lockwood D. H., and Williams-Ashman, H. G., 1970, Concentration of putrescine and polyamines and their enzymatic synthesis during androgen-induced prostatic growth, Biochem. J. 117:17–31.

    PubMed  CAS  Google Scholar 

  • Petito C. K., and Babiak, T., 1982, Early proliferative changes in astrocytes in postischemic noninfarcted rat brain, Ann. Neurol. 11:510–518.

    Article  PubMed  CAS  Google Scholar 

  • Petito C. K., and Pulsinelli, W. A., 1984, Sequential development of reversible and irreversible neuronal damage following cerebral ischemia, J. Neuropathol. Exp. Neurol. 43:141–153.

    Article  PubMed  CAS  Google Scholar 

  • Pluta, R., 1987, Resuscitation of the rabbit brain after acute complete ischemia lasting up to one hour:Pathophysiological and pathomorphological observations, Resuscitation 15:267–287.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli, W. A., 1985, Selective neuronal vulnerability: Morphological and molecular characteristics, Prog. Brain Res. 63:29–37

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli W. A., and Brierley, J., 1979, A new model of bilateral hemispheric ischemia in un-anesthetized rat, Stroke 10:267–272.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli W. A., Brierley J. B., and Plum, F., 1982, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol. 11:491–498.

    Article  PubMed  CAS  Google Scholar 

  • Röhn, G., Kocher, M., Oschlies, U., and Paschen, W., 1988, Distribution of putrescine in subcellular fractions of rat brain after reversible cerebral ischemia, Biol. Chem. Hoppe-Seyler 396:1210.

    Google Scholar 

  • Röhn, G., Paschen, W., Kocher, M., Oschlies, U., and Hossmann, K.-A., 1989, Subcellular distribution of putrescine in reversible cerebral ischemia of rat brain, in “Cerebral Vascular Disease, vol. 7” (J. S. Meyer, H. Lechner, M. Reivich, and E. O. Ott, eds.), pp. 269–272, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Rothman, S., 1984, Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death, J. Neurosci. 4:1884–1891.

    PubMed  CAS  Google Scholar 

  • Schmidt-Kastner, R., Hossmann, K.-A., and Grosse Ophoff, B., 1986, Relationship between metabolic recovery and the EEG after prolonged ischemia of cat brain, Stroke 17:1164–1169.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, N., 1981, Polyamine metabolism and function in the brain, Neurochem. Int. 3:95–110.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö, B. K., 1988a, Mechanisms of ischemic brain damage, Crit. Care Med. 16:954–963.

    Article  PubMed  Google Scholar 

  • Siesjö, B. K., 1988b, Historical overview: Calcium, ischemia and death of brain cells, Ann. N.Y. Acad. Sci. 522:638–661.

    Article  PubMed  Google Scholar 

  • Slotkin T. A., and Bartolome, J., 1986, Role of ornithine decarboxylase and the polyamines in nervous system development: A review, Brain Res. Bull 17:307–320.

    Article  PubMed  CAS  Google Scholar 

  • Smith C. B., Deibler G. E., Eng, N., Schmidt, K., and Sokoloff, L., 1988, Measurement of local cerebral protein synthesis in vivo: Influence of recycling of amino acids derived from protein degradation, Proc. Natl. Acad. Sci. USA 85:9341–9345.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M.-L., Kalimo, H., Warner D. S., and Siesjö, B. K., 1988, Morphological lesions in the brain preceding the development of postischemic seizures, Acta Neuropathol. 76:253–264.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, R., Yamaguchi, T., Li C. L., and Klatzo, I., 1983, The effects of 5-minutes ischemia in Mongolian gerbils. II. Changes in spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus, Acta Neuropathol. 60:217–222.

    Article  PubMed  CAS  Google Scholar 

  • Taft, W. C., Tennes-Rees K. A., Blair R. E., Clifton G. L., and DeLorenzo, R. J., 1988, Cerebral ischemia decreases endogenous calcium-dependent protein phosphorylation in gerbil brain, Brain Res. 447:159–163.

    Article  PubMed  CAS  Google Scholar 

  • Thilmann, R., Xie, Y., Kleihues, P., and Kiessling, M., 1986a, Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus, Acta Neuropathol. 71:88–93.

    Article  PubMed  CAS  Google Scholar 

  • Thilmann, R., Xie, Y., Kleihues, P., and Kiessling, M., 1988b, Delayed ischemic cell death in gerbil hippocampus: Suppression and recovery of protein synthesis and the protective effect of cycloheximide, Clin. Neurol. 5:107.

    Google Scholar 

  • Trout J. J., Koenig, H., Goldstone A. D., and Lu, C. Y., 1986, Blood-brain barrier breakdown by cold injury. Polyamine signals mediate acute stimulation of endocytosis, vesicular transport, and microvillus formation in rat cerebral capillaries, Lab. Invest. 55:622–631.

    PubMed  CAS  Google Scholar 

  • Wieloch, T., 1985, Neurochemical correlates to selective neuronal vulnerability, Progr. Brain Res. 63: 69–85.

    Article  CAS  Google Scholar 

  • Williams-Ashman H. G., and Canellakis, Z. N., 1979, Polyamines in mammalian biology and medicine, Perspect. Biol. Med. 22:421–438.

    PubMed  CAS  Google Scholar 

  • Xie, Y., Herget, T., Hallmayer, J., Starzinski-Powitz, A., and Hossmann, K.-A., 1989, Determination of RNA content in post-ischemic gerbil brain by in situ hybridization, Metab. Brain Dis. 4:239–251

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara, T., 1976, Cerebral anoxia: Effect on neuron-glia fractions and polysomal protein synthesis, J. Neurochem. 27:539–543.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hossmann, K.A., Paschen, W. (1992). Disturbances of Protein and Polyamine Metabolism After Eversible Cerebral Ichemia. In: Bazan, N.G., Braquet, P., Ginsberg, M.D. (eds) Neurochemical Correlates of Cerebral Ischemia. Advances in Neurochemistry, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3312-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3312-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6458-0

  • Online ISBN: 978-1-4615-3312-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics