Skip to main content

Simulation and Modeling Methodology

  • Chapter
Simulation of Communication Systems

Abstract

Building simulation models and running (executing) simulations are activities that call upon a wide variety of skills and considerations which, for present purposes, we might divide into two broad categories: the “art” and the “science” of simulation. In the latter camp we include the more theoretically based and quantitative aspects which have formed the bulk of the preceding chapters. On the other hand, there is a set of considerations only partially or perhaps not at all related to theoretical or quantifiable matters, or difficult to describe in such terms, that are nevertheless fundamental in building simulations and in obtaining useful results. This set we might regard as the “art” of simulation. These latter considerations and ways of dealing with them essentially form the methodology of simulation. The dividing line between “art” and “science” is somewhat subjective, but is not critical, in any case. In this chapter we discuss several issues that we classify as methodological.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. S. Shanmugan, An update on software packages for simulation of communication systems (links), IEEE J. Selected Areas Commun. 6(1), 5–12 (1988).

    Article  Google Scholar 

  2. R. A. Harris and P. Kristiansen, The generation and use of bit error rate surface plotsIEEE J. Selected Areas Commun. SAC- 2(1), 185–190 (1984).

    Article  Google Scholar 

  3. L. C. Palmer and S. Lebowitz, Including synchronization in time-domain channel simulation, COMSAT Tech. Rev. 7(2), 475–525 (1977).

    Google Scholar 

  4. I. Richer, A block phase estimator for offset-QPSK signaling, Proc. National Telecommun. Conf., New Orleans, LA, Dec., 1975.

    Google Scholar 

  5. M. C. Jeruchim, Some modeling aspects in the simulation of digital links, Proc. International Telemetering Conf., Los Angeles, CA, Nov. 14–16, 1978.

    Google Scholar 

  6. W. C. Lindsey and C. M. Chie, A survey of digital phase-locked loops, Proc. IEEE 69(4), 410–431 (1981).

    Article  Google Scholar 

  7. S. C. Gupta, Phase-locked loops, Proc. IEEE 63(2), 291–306 (1975).

    Article  Google Scholar 

  8. R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, 1983.

    Google Scholar 

  9. M. Pent, L. LoPresti, M. Mondin, and L. Zaccagnini, Multirate sampling techniques for simulation of communication systems, IASTED Int. Symp. on Modeling, Identification, and Control, Grindewald, Switzerland, February, 1987.

    Google Scholar 

  10. V. Castellani, M. Mondin, M. Pent, and P. Secchi, Simulation of spread spectrum communication links, Presented at 2nd IEEE International Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks, Amherst, MA, October 12–14, 1988.

    Google Scholar 

  11. R. Blum and M. C. Jeruchim, Modeling nonlinear amplifiers for communication simulation, Proc. Int. Conf. Commun. (ICC ‘89), Boston, MA, June 11–15, 1989.

    Google Scholar 

  12. D. Stapor and D. Hayes, On the number of symbols processed in quasianalytic communications link simulation, Presented at 2nd IEEE International Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks, Amherst, MA, October 12–14, 1988.

    Google Scholar 

  13. J. G. Proakis, Digital Communications, McGraw-Hill, New York (1983).

    Google Scholar 

  14. M. L. Steinberger, P. Balaban, and K. S. Shanmugan, On the effects of uplink noise, Conf. Red. Int. Conf. Commun. (ICC ‘81), Denver, CO, June 10–14, 1981.

    Google Scholar 

  15. M. Pent, L. LoPresti, G. D’Aria, and G. DeLuca, Semianalytic BER estimation by simulation for nonlinear bandpass channels, IEEE J. Selected Areas Commun. 6(1), 34–41 (1988).

    Article  Google Scholar 

  16. D. J. Torrieri, The information-bit error rate for block codes, IEEE Trans. Commun.COM-32(4), 474–476 (1984).

    Google Scholar 

  17. M. C. Jeruchim, On the coding gain for degraded channels,IEEE Trans. Commun.COM-34(5), 492–496 (1986).

    Article  Google Scholar 

  18. A. J. Viterbi, Convolutional codes and their performance in communication systems, IEEE Trans. Commun. Technol . ÇOM-19(5), 751–772 (1971) (Part II).

    Article  MathSciNet  Google Scholar 

  19. M. C. Jeruchim and T. J. Kiandrud, On the steady-state simulation of equalized digital communications links, Conf. Rcd. IEEE Global Telecommun. Conf., New Orleans, LA, Dec. 2–5, 1985, Vol. I.

    Google Scholar 

  20. C. A. Belfiore and J. H. Park, Decision feedback equalization, Proc.. IEEE 67 (8), 1143–1156 (1979).

    Article  Google Scholar 

  21. J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7, 308–383 (1965).

    Article  MATH  Google Scholar 

  22. D. M. Jansky and M. C. JeruchimCommunication Satellites in the Geostationary Orbit, Artech House, Norwood, MA (2nd Ed.) (1987).

    Google Scholar 

  23. V. K. Prabhu, Error rate considerations for coherent phase-shift-keyed systems with co-channel interference, Bell Syst. Tech. J. 48 (3), 743–767 (1969).

    MATH  Google Scholar 

  24. S. Benedetto, E. Biglieri, and V. Castellani, Combined effects of intersymbol. interchannel,. and co-channel interference in M-ary CPSK systems,IEEE Trans. Commun.COM-21(9), 997–1008 (1973).

    Article  Google Scholar 

  25. E. L. Pinto and J. C. Brandão, On the efficient use of computer simulated digital signals to evaluate performance parameters, IEEE J. Selected Areas Commun. 6(1), 52–57 (1988).

    Article  Google Scholar 

  26. G. S. Fishman,Concepts and Methods in Discrete Event Digital Simulation, J. Wiley and Sons, New York (1973) Chap. 7.

    Google Scholar 

  27. D. E. Knuth, The Art of Computer Programming, 2nd Ed., Vol. 2, Seminumerical Algorithms,Addison-Wesley, Reading, MA (1981).

    Google Scholar 

  28. Stephen K. Park and K. W. Miller, Random number generators: Good ones are hard to find, Commun. ACM 31 (10),1192–1201 (1988).

    Article  MathSciNet  Google Scholar 

  29. J. H. Moore and M. C. Jeruchim, Empirical study on the variability of Monte Carlo simulation, Proc. Int. Telemetering Conf., San Diego, CA, October 14–16,1980.

    Google Scholar 

  30. A. Papoulis,Signal Analysis, McGraw-Hill, New York (1977).

    MATH  Google Scholar 

  31. Special Issue on Frequency Stability, Proc. IEEE 54(2), February (1966).

    Google Scholar 

  32. B. Mandelbrot, Some noises with 1/f spectrum; A bridge between direct current and white noise, IEEE Trans. Inf. Theory IT- 13 (2), 289–298 (1967).

    Article  MATH  Google Scholar 

  33. B. Mandelbrot and J. W. VanNess, Fractional Brownian motions, fractional noises, and applications, SIAM Rev . 10(4), 422–437 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  34. W. C. Lindsey and C. M. Chie, Theory of oscillator instability based on structure functions, Proc. IEEE 64 (12), 1652–1666 (1976).

    Article  MathSciNet  Google Scholar 

  35. M. S. Keshner, 1/f Noise, Proc. IEEE 70 (3), 212–218 (1982).

    Article  Google Scholar 

  36. J. Rutman, Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress, Proc. IEEE 66 (9), 1048–1075 (1978).

    Article  Google Scholar 

  37. M. L. Liou, Noise in an FM system due to an imperfect linear transducer, Bell Syst. Tech. J. 45, 1537–1561 (1966).

    Google Scholar 

  38. T. G. Cross, Intermodulation in FM systems due to transmission deviations and AM/PM conversion, Bell Syst. Tech. J. 45, 1749–1773 (1966).

    Google Scholar 

  39. J. G. Garrison, Intermodulation distortion in frequency-division-multiplex FM systems-A tutorial summary, IEEE Trans. Commun. Technol . COM-16(2), 289–303. (1968).

    Article  Google Scholar 

  40. F. J. Scire, A probability density function theorem for the modulo Y values of the sum of two statistically independent processes, Proc. IEEE (Lett.) 56(2), 204–205 (1968). [See also Proc. IEEE Lett. 58(4), 604 (1970).]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jeruchim, M.C., Balaban, P., Shanmugan, K.S. (1992). Simulation and Modeling Methodology. In: Simulation of Communication Systems. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3298-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3298-9_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6451-1

  • Online ISBN: 978-1-4615-3298-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics