Skip to main content

Estimation of Performance Measures from Simulation

  • Chapter
Simulation of Communication Systems

Part of the book series: Applications of Communications Theory ((ACTH))

  • 292 Accesses

Abstract

A Monte Carlo simulation run can be viewed as a statistical experiment which is the software counterpart of an experiment on a real system. The objective of the experiment is to allow us to make inferences about one or more performance parameters. The observations (measurements) consist of discretely spaced values of a finite-duration segment of a random process at some point in the system. Hence, these measurements are inherently random. Therefore, the inferences made can only be statistical. In this chapter we study the statistical aspect of measuring performance parameters within the simulation context. The parameters that we shall specifically be concerned with are the average level, average power, signal-to-noise ratio, probability distribution and density function, bit (symbol) error probability and power spectral density. We will also briefly review some popular visual indicators of signal quality, which are often generated in a simulation to provide a qualitative sense of the performance of a digital system, but which can also be used to provide somewhat loose quantitative bounds on performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. A. Gardner, Introduction to Random Processes, Macmillan, New York (1986).

    MATH  Google Scholar 

  2. W. A. Gardner, Rice’s representation for cyclostationary processes, IEEE Trans. Commun . COM-35(1), 74–78 (1987).

    Article  Google Scholar 

  3. W. A. Gardner, Common pitfalls in the application of stationary process theory to time-sampled and modulated signals, IEEE Trans. Commun . COM-35(5), 529–534 (1987).

    Article  Google Scholar 

  4. A. M. Mood, Introduction to the Theory of Statistics, McGraw-Hill, New York (1950).

    MATH  Google Scholar 

  5. M. Fisz, Probability Theory and Mathematical Statistics, 3rd ed., Wiley, New York (1963).

    MATH  Google Scholar 

  6. P. L. Meyer, Introductory Probability and Statistical Applications, 2nd ed., Addison-Wesley, Reading, MA (1970).

    Google Scholar 

  7. V. K. Rohatgi, Statistical Inference, Wiley, New York (1984).

    MATH  Google Scholar 

  8. H. Cramer, Mathematical Methods of Statistics, Princeton University Press, Princeton, NJ (1946).

    MATH  Google Scholar 

  9. P. Bickel and K. Doksum, Mathematical Statistics, Holden-Day, San Francisco (1977).

    MATH  Google Scholar 

  10. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, 4th ed., Macmillan, New York (1978).

    Google Scholar 

  11. M. C. Jeruchim and R. Wolfe, Estimation of the signal-to-noise ratio (SNR) in communication simulation, Conference Record, IEEE Global Telecommun. Conf. (Globecom), Dallas, Texas, November 27–30, 1989.

    Google Scholar 

  12. W. H. Tranter and M. D. Turner, Signal-to-noise ratio estimation in digital computer simulation of low-pass and bandpass systems with applications to analog and digital communications, Final Report--Vol. III, contract No. NAS 9–14848, University of Missouri-Rolla Technical Report CSR-77–6, July, 1977.

    Google Scholar 

  13. M. D. Turner, W. H. Tranter, and T. W. Eggleston, The estimation of signal-to-noise ratios in digital computer simulations of low-pass and bandpass systems, 1977 IEEE Midcon Conf., November, 1977.

    Google Scholar 

  14. N. L. Johnson and S. Kotz, Continuous Univariate Distributions, Vol. 2, Houghton-Mifflin, Boston, Massachusetts (1970).

    MATH  Google Scholar 

  15. R. M. Gagliardi and C. M. Thomas, PCM data reliability monitoring through estimation of signal-to-noise ratio, IEEE Trans. Commun. Tech . COM-16(3), 479–486 (1968).

    Article  Google Scholar 

  16. A. Papoulis, Signal Analysis, McGraw-Hill, New York (1977).

    MATH  Google Scholar 

  17. E. Parzen, On estimation of a probability density and its mode, Ann. Math. Stat. 33, 1065–1976 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Tapia and J. Thompson, Nonparametric Probability Density Estimation, Johns Hopkins University Press, Baltimore, Maryland (1978).

    Google Scholar 

  19. S. M. Ross, Stochastic Processes, Wiley, New York (1983).

    MATH  Google Scholar 

  20. K. S. Shanmugan and A. M. Breipohl, Random Signals: Detection, Estimation and Data Analysis, Wiley, New York, pp. 18–20 (1988).

    Google Scholar 

  21. V. I. Johannes, Improving on bit error rate, IEEE Commun. Mag. 22(12), 18–20 (1984).

    Article  Google Scholar 

  22. J. P. C. Kleijnen, Statistical Techniques in Simulation, Part I, Dekker, New York (1974).

    Google Scholar 

  23. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Chapman and Hall, New York (1964).

    Book  MATH  Google Scholar 

  24. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs,and Mathematical Tables, U.S. Department of Commerce, National Bureau of Standards, Applied Mathematics Series, 55 (1964).

    Google Scholar 

  25. E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. I, Cambridge University Press, Cambridge (1954).

    MATH  Google Scholar 

  26. W. Turin, Performance Analysis of Digital Transmission Systems, Computer Science Press, Rockville, MD (1990).

    Google Scholar 

  27. M. D. Knowles and A. I. Drukarev, Bit error rate estimation for channels with memory, IEEE Trans. Commun. 36(6), 767–769 (1988).

    Article  Google Scholar 

  28. M. C. Jeruchim, Techniques for estimating the bit error rate in the simulation of digital communication systems, IEEE J. Selected Areas Commun. SAC-2(1), 153–170 (1984).

    Article  Google Scholar 

  29. R. J. Wolfe, M. C. Jeruchim, and P. M. Hahn, On optimum and suboptimum biasing procedures for importance sampling in communication simulation, IEEE Trans. Commun. 38(5), 639–647 (1990).

    Article  Google Scholar 

  30. P. Balaban, Statistical evaluation of the error rate of the fiberguide repeater using importance sampling, Bell Syst. Tech. J. 55(6), 745–766 (1976).

    MathSciNet  Google Scholar 

  31. K. S. Shanmugan and P. Balaban, A modified Monte Carlo simulation technique for the evaluation of error rate in digital communications systems, IEEE Trans. Commun. COM-28(11), 1916–1924 (1980).

    Article  Google Scholar 

  32. R. L. Mitchell, Importance sampling applied to simulation of false alarm statistics, IEEE Trans. Aerosp. Electron. Syst. AES-17(1), 15–24 (1981).

    Article  Google Scholar 

  33. G. W. Lank, Theoretical aspects of importance sampling applied to false alarms, IEEE Trans. Inform. Theory IT-29(1), 73–82 (1983).

    Article  Google Scholar 

  34. M. C. Jeruchim, On the application of importance sampling to the simulation of digital satellite multihop links, IEEE Trans. Commun. COM-32(10), 1088–1092 (1984).

    Article  Google Scholar 

  35. B. R. Davis, An improved importance sampling method for digital communication system simulations, IEEE Trans. Commun. COM-34(7), 715–719 (1986).

    Article  Google Scholar 

  36. P. M. Hahn and M. C. Jeruchim, Developments in the theory and application of importance sampling, IEEE Trans. Commun. COM-35(7), 706–714 (1987).

    Article  Google Scholar 

  37. M. A. Herro and J. M. Nowack, The use of importance sampling in coded digital communication simulation, Fifth Int. Conf. Systems Engineering, Dayton, Ohio, September 9–11, 1987.

    Google Scholar 

  38. Q. Wang and V. J. Bhargava, On the application of importance sampling to BER estimation in the simulation of digital communication systems, IEEE Trans. Commun. COM-35(11), 1231–1233 (1987).

    Article  Google Scholar 

  39. D. Lu and K. Yao, Improved importance sampling technique for efficient simulation of digital communication systems, IEEE J. Selected Areas Commun. 6 (1), 67–75 (1988).

    Article  Google Scholar 

  40. J. S. Sadowsky and J. A. Bucklew, On large deviations theory and asymptotically efficient Monte Carlo simulation, IEEE Trans. Inf. Theory, 36(3), 579–588 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. C. Jeruchim, P. M. Hahn, K. P. Smyntek, and R. T. Ray, An experimental investigation of conventional and efficient importance sampling, IEEE Trans. Commun. 37(6), 578–587 (1989).

    Article  Google Scholar 

  42. P. M. Hahn, M. C. Jeruchim, and T. J. Klandrud, Implementation of importance sampling in multi-hop communication simulation, in Conference Record, GLOBECOM ‘86, Vol. 1, Houston, Texas, December 1–4, 1986, pp. 4.1.1–4.1.5.

    Google Scholar 

  43. D. Lu and K. Yao, On some new importance sampling results for simulation of nonlinear digital communication systems, Proc. 1988 Conference on Information Sciences and Systems, Vol. I, pp. 336–340, Princeton, New Jersey, March 16–18, 1988.

    Google Scholar 

  44. M. Devetsikiotis and J. K. Townsend, A useful and general technique for improving the efficiency of Monte Carlo simulation of digital communication systems, Proc. Globecom Conf., San Diego, CA, Dec. 2–5, 1990.

    Google Scholar 

  45. H. J. Schlebusch and J. K. Townsend, Optimization of importance sampling simulations by monitoring and feedback, Presentation at the Third IEEE International Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks, Torino, Italy, Sept. 26–28, 1990.

    Google Scholar 

  46. E. J. Gumbel, Statistics of Extremes, Columbia University Press, New York (1958).

    MATH  Google Scholar 

  47. S. B. Weinstein, Theory and application of some classical and generalized asymptotic distributions of extreme values, IEEE Trans. Inform. Theory, 1T-19(2), 148–154 (1973).

    Article  MATH  Google Scholar 

  48. M. Guida, D. Iovino, and M. Longo, Comparative performance analysis of some extrapolative estimators of probability tails, IEEE J. Select. Areas Commun. 6 (1), 76–84 (1988).

    Article  Google Scholar 

  49. S. B. Weinstein, Estimation of small probabilities by linearization of the tail of a probability distribution function, IEEE Trans. Commun. Technol. COM-19(6), 1149–1155’(1971).

    Article  Google Scholar 

  50. M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, 3rd ed., Vol. 2, Hafner Publishing, New York (1961).

    Google Scholar 

  51. D. J. Gooding, Performance monitor techniques for digital receivers based on extrapolation of error rate, IEEE Trans. Commun. Technol. COM-16(3), 380–387 (1968).

    Article  Google Scholar 

  52. J. S. Sadowsky, A new method for Viterbi decoder simulation using importance sampling, IEEE Trans. Commun. 38(9), 1341–1351 (1990).

    Article  Google Scholar 

  53. F. Amoroso, The bandwidth of digital data signals, IEEE Commun. Mag. 18(6), 13–24 (1980).

    Article  Google Scholar 

  54. D. Slepian, On bandwidth, Proc. IEEE 64(3), 292–300 (1976).

    Article  MathSciNet  Google Scholar 

  55. D. Middleton, An Introduction to Statistical Communication Theory, McGraw-Hill, New York (1960).

    MATH  Google Scholar 

  56. H. E. Rowe, Signal and Noise in Communication Systems, Van Nostrand, New York (1965).

    Google Scholar 

  57. N. Blachman, The power spectrum of a digital signal, IEEE Trans. Commun. COM-22(3), 349–350 (1974).

    Google Scholar 

  58. V. K. Prabhu and H. E. Rowe, Spectra of digital phase modulation by matrix methods, Bell Syst. Tech. J. 53 (5), 899–935 (1974).

    MathSciNet  MATH  Google Scholar 

  59. I. Korn, Digital Communications, Van Nostrand Reinhold, New York (1985).

    Book  MATH  Google Scholar 

  60. J. B. Anderson, T. Aulin, and C. E. Sundberg, Digital Phase Modulation, Plenum Press, New York (1986).

    Google Scholar 

  61. O. Shimbo, Transmission Analysis in Communications, Vol. I, Computer Science Press, Rockville, MD (1988).

    Google Scholar 

  62. G. Robinson, O. Shimbo, and R. Fang, PSK Signal Power spectrum spread produced by memoryless nonlinear TWTs, COMSAT Tech. Rev. 3(2), 227–256 (1973).

    Google Scholar 

  63. C. Devieux, Analysis of PSK signal power spectrum spread with a Markov chain model, COMSAT Tech. Rev. 5(2), 225–252 (1975).

    Google Scholar 

  64. F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform, Proc. IEEE, 66(1), 51–83 (1978).

    Article  Google Scholar 

  65. S. M. Kay and S. L. Marple, Jr., Spectrum analysis-A modern perspective, Proc. IEEE, 69(11), 1380–1419 (1981).

    Article  Google Scholar 

  66. . Proceedings of the IEEE, Special Issue on Spectral Estimation, Vol 70, No. 9, September (1982).

    Google Scholar 

  67. N. Mohanty, Random Signals,Estimation and Identification, Van Nostrand Reinhold, New York (1986).

    Book  Google Scholar 

  68. S. L. Maple, Jr., Digital Spectral Analysis with Applications, Prentice-Hall, Englewood Cliffs, NJ (1987).

    Google Scholar 

  69. W. B. Davenport and W. L. Root, An Introduction of the Theory of Random Signals and Noise, McGraw-Hill, New York (1958).

    MATH  Google Scholar 

  70. P. D. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms, IEEE Trans. Audio Electroacoust. AU-15, 70–73 (1967).

    Article  MathSciNet  Google Scholar 

  71. K. Feher et al., Telecommunications Measurements, Analysis, and Instrumentation, Prentice-Hall, Englewood Cliffs, NJ (1987).

    Google Scholar 

  72. Bell Telephone Laboratories, Transmission Systems for Communications, 5th ed. (1982).

    Google Scholar 

  73. J. G. Proakis, Digital Communications, McGraw-Hill (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jeruchim, M.C., Balaban, P., Shanmugan, K.S. (1992). Estimation of Performance Measures from Simulation. In: Simulation of Communication Systems. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3298-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3298-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6451-1

  • Online ISBN: 978-1-4615-3298-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics