Skip to main content

Modeling of Communication Systems

  • Chapter
Simulation of Communication Systems

Abstract

The simulation of a communication system requires a software-representable description of the system. The standard description of a system is a block diagram, where each block represents a signal-processing operation. The block diagram, as such, is really only a signal flow diagram in the sense that it merely indicates the generic type of operations that the signal(s) and noise(s) that drive the system are subjected to. While there are many different types of communication systems using a wide range of technologies, information transmission in all communication systems takes place through a series of basic (or “generic”) signal-processing operations. The following operations are fundamental to all communication systems (although, in a given system, not all operations need appear): source encoding and decoding, modulation and demodulation, multiplexing, error control coding/decoding, filtering (fixed and adaptive), and synchronization. Although many of these terms are usually associated with digital transmission, they can in some cases also be given a meaningful interpretation for analog signals. Figure 4.1 (adapted from Ref. 1) shows a block diagram of a “generic” communication system in the sense that virtually any communication system can be specified as a particular case of this block diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Sklar, A structured overview of digital communications-A tutorial review, IEEE Commun. Mag. 21 (Part I, August), 4–17 (1983); (Part II, October), 6–21 (1983).

    Article  Google Scholar 

  2. J. B. Anderson, T. Aulin, and C E. Sundberg, Digital Phase Modulation, Plenum Press, New York (1986).

    Google Scholar 

  3. S. Benedetto, E. Bigu eni, and V. Castellani, Digital Transmission Theory, Prentice’-Hall, Englewood Cliffs, NJ (1987).

    Google Scholar 

  4. S. Haykin, Communication Systems, Wiley, New York (1983).

    Google Scholar 

  5. I. Korn, Digital Communications, Van Nostrand Reinhold, New York (1985).

    Book  MATH  Google Scholar 

  6. E. A. Lee and D. G. Messerschmitt, Digital Communication, Kluwer Academic Press, Boston, MA (1988).

    Google Scholar 

  7. R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Communication, McGraw-Hill, New York (1968).

    Google Scholar 

  8. J. G. Proakis, Digital Communications, 2nd Ed., McGraw-Hill, New York (1988).

    Google Scholar 

  9. M. Schwartz, Information Transmission, Modulation, and Noise, 3rd Ed., McGraw-Hill, New York (1980).

    Google Scholar 

  10. K. S. Shanmugan, Digital and Analog Communication Systems, McGraw-Hill, New York (1979).

    Google Scholar 

  11. O. Shimbo, Transmission Analysis in Communication Systems, Vols. 1 and 2, Computer Science Press, Rockville, MD (1988).

    Google Scholar 

  12. B. Sklar, Digital Communications: Fundamentals and Applications, Prentice-Hall, Englewood Cliffs, NJ (1988).

    Google Scholar 

  13. J. J. Spilker, Jr., Digital Communications by Satellite, Prentice-Hall, Englewood Cliffs, NJ (1977).

    Google Scholar 

  14. A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding, McGraw-Hill, New York (1979).

    MATH  Google Scholar 

  15. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley, New York (1965).

    Google Scholar 

  16. R. E. Ziemer and W. H. Tranter, Principles of Communications, Houghton Mifflin, New York (1976).

    Google Scholar 

  17. G. Agrawal and N. Dutta, Long Wavelength Semiconductor Lasers, Van Nostrand, New York (1986).

    Book  Google Scholar 

  18. R. Vodhamel, A. Elrefaie, R. Wagner, M. Igbal, J. Gimlett, and S. Tsuji, 10 to 20 Gb/s modulation performance of 1.55 µm DFB lasers for FSK systems, IEEE J. Lightwave Technol. 7(10), 1454–1460 (1989).

    Article  Google Scholar 

  19. B. Smith, Instantaneous companding of quantized signals, Bell Syst. Tech. J. 36, 563–709 (1957).

    Google Scholar 

  20. M. L. Honig and D. G. Messerschmitt, Adaptive Filters. Kluwer Academic Press, Boston, MA (1984).

    Google Scholar 

  21. B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1985).

    Google Scholar 

  22. C. E. Shannon and W. Weaver, Mathematical Theory of Communications, University of Illinois Press (1963).

    Google Scholar 

  23. S. Pasupathy, Correlative coding: A bandwidth efficient signaling scheme, IEEE Commun. Mag. 15, 4–11 (1977).

    Google Scholar 

  24. P. Kabal and S. Pasupathy, Partial response signaling, IEEE Trans. Commun. COM-29(9), 921–934 (1975).

    Article  Google Scholar 

  25. D. F. Hoeschele, Jr., Analog-to-Digital/Digital-to-Analog Conversion Techniques, Wiley, New York (1968).

    MATH  Google Scholar 

  26. W. P. Osborne and M. B. Luntz, Coherent and noncoherent detection of CPFSK, IEEE Trans. Commun. COM-22, 1023–1036 (1974).

    Article  Google Scholar 

  27. T. A. Schonhoff, Bandwidth vs. performance considerations for CPFSK, Proc. Natl.Telecommun. Conf. (NTC), New Orleans, LA, December 1975, pp. 38:1–38:5.

    Google Scholar 

  28. T. A. Schonhoff, Symbol error probabilities for M-ary CPFSK: Coherent and noncoherent detectionIEEE Trans. Commun. COM-24, 644–652 (1976).

    Article  MATH  Google Scholar 

  29. H. R. Mathwich, J. F. Balcewicz, and M. Hecht, The effect of tandem band and amplitude limiting on the E b /Na performance of minimum (frequency) shift keying (MSK), IEEE Trans. Commun. COM-22, 1525–1540 (1974).

    Article  Google Scholar 

  30. S. A. Gronemeyer and A. L. McBride, Theory and comparison of MSK and offset QPSK modulation techniques through a satellite channel, Proc. Natl. Telecommun. Conf. (NTC), New Orleans, LA, December 1975, pp. 30:28–30:32.

    Google Scholar 

  31. F. Amoroso, Pulse and spectrum manipulation in the minimum (frequency) shift keying (MSK) format, IEEE Trans. Commun. COM-24, 381–384 (1976).

    Article  Google Scholar 

  32. C. R. Ryan, A. R. Hambley, and D. E. Vogt, 760 Mbit/s serial MSK microwave modem, IEEE Trans. Commun. COM-28(5), 771–777 (1980).

    Article  Google Scholar 

  33. M. J. Mohan, D. B. Vandervoet, and R. M. Fielding, Analysis and simulation of an MSK modulator in a dynamic temperature environment, Proc. Int. Conf. Commun. (ICC ‘81), Vol. 1, Denver, CO, June 14–18, 1981.

    Google Scholar 

  34. R. DeBuda, Coherent demodulation of frequency-shift keying with low deviation ratio, IEEE Trans. Commun. COM-20(3), 429–435 (1972).

    Article  Google Scholar 

  35. R. W. D. Booth, Carrier phase and bit sync regeneration for the coherent demodulation of MSK, Conf. Rec., National Telecommun., Conf., Vol. 1, Birmingham, AL, Dec. 3–6, 1978.

    MathSciNet  Google Scholar 

  36. S. O. Rice, Noise in FM receivers, in Time Series Analysis, M. Rosenblatt (ed.), Wiley, New York (1963).

    Google Scholar 

  37. G. Lindgren, Shape and duration of clicks in modulated FM transmission, IEEE Trans. Inf. Theory IT-30(5), 728–735 (1984).

    Article  MATH  Google Scholar 

  38. J. K. Holmes, Coherent Spread Spectrum Systems, Wiley, New York (1982).

    Google Scholar 

  39. C. K. Santhanan and J. Koerner, Transfer function synthesis as a ratio of two complex polynomials, IEEE Trans. Aut. Control AC-8, 56–58 (1963).

    Article  Google Scholar 

  40. M. T. Jong and K. S. Shanmugan, Determination of transfer functions from amplitude response data, Int. J. Control, 25, 941–948 (1977).

    Article  Google Scholar 

  41. E. Wong and B. Hajek, Stochastic Processes in Engineering Systems, Springer-Verlag, New York (1985).

    Book  MATH  Google Scholar 

  42. W. A. Gardner, Introduction to Random Processes, Macmillan, New York (1986)

    MATH  Google Scholar 

  43. J. K. Chamberlain, F. M. Clayton, H. Sari, and P. Vandamme, Receiver techniques for microwave digital radio, IEEE Commun. Mag. 24(11), 43–54 (1986).

    Article  Google Scholar 

  44. G. H. Millman, Atmospheric and Extraterrestrial Effects on Radio Wave Propagation, General Electric Co., Technical Information Series, No R61EMH29, June, 1961.

    Google Scholar 

  45. W. L. Flock, Propagation Effects on Satellite Systems at Frequencies Below 10 GHz, NASA Reference Publication 1108, December, 1983.

    Google Scholar 

  46. L. J. Ippolito, R. D. Kaul, and R. G. Wallace, Propagation Effects Handbook for Satellite Systems Design, NASA Reference Publication 1082(03), June, 1983.

    Google Scholar 

  47. P. Lo, J. Haddon, H. O’Neill, and E. Vilar, Computation of rain induced scintillations on satellite down-links at microwave frequencies, IEE Conférence on Communications, Publication 219.

    Google Scholar 

  48. H. J. Liebe, Modeling attenuation and phase of radio waves in air at frequencies below 1000GHz, Radio Sci. 16(6), 1183–1199 (1981).

    Article  Google Scholar 

  49. K. S. Shanmugan, M. S. McKinley, V. S. Frost, E. M. Friedman, and J. C. Holtzman, Wideband digital transmission through the atmosphere at EHF frequencies: Effects of refractive dispersion, Proc. Globecom Conference, Atlanta, GA, November 26–29,1984.

    Google Scholar 

  50. R. K. Crane, Prediction of attenuation by rain, IEEE Trans. Commun. COM-28,1717–1733 (1980).

    Google Scholar 

  51. L. J. Ippolito, Jr., Radiowave propagation in satellite communications, Van Nostrand Reinhold, New York (1986).

    Book  Google Scholar 

  52. D. M. Jansky and M. C. Jeruchim, Communication Satellites in the Geostationary Orbit 2nd Ed., Artech House, Norwood, MA (1987).

    Google Scholar 

  53. G. H. Millman and M. C. Arabadjis, Tropospheric and Ionospheric Phase Perturbations and Doppler Frequency Shift Effects, General Electric Co., Technical Information Series No. R84EMH003, August, 1984.

    Google Scholar 

  54. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Wiley, New York (1965).

    Google Scholar 

  55. J. C. Daly, Ed., Fiber Optics, CRC Press, Boca Raton, FL (1984).

    Google Scholar 

  56. G. Keiser, Optical Fiber Communications, McGraw-Hill, New York (1983).

    Google Scholar 

  57. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water, and the Atmosphere, Plenum Press, New York (1988).

    Google Scholar 

  58. D. G. Duff, Computer-aided design of digital lightwave systems, IEEE J. Selected Areas Commun. SAC-2(1), 171–185 (1984).

    Google Scholar 

  59. P. K. Cheo, Fiber Optics Devices and Systems, Prentice-Hall, Englewood Cliffs, NJ (1985).

    Google Scholar 

  60. J. K. Townsend, Computer Simulation of Digital Lightwave Communication Links, Ph.D. thesis, University of Kansas, June, 1988.

    Google Scholar 

  61. J. Gimlett and N. Cheung, Dispersion penalty analysis tor LED/single-mode fiber transmission systems, IEEE J. Lightwave Technol. LT-4,1381–1392 (1986).

    Article  Google Scholar 

  62. A. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, Chromatic dispersion limitations in coherent optical fiber transmission systems, IEE Electron. Lett. 23(14), 756–758 (1987).

    Article  Google Scholar 

  63. P. A. Bello, Characterization of randomly time-variant linear channels, IEEE Trans. Commun. Syst. CS-11, 360–393 (1963).

    Article  Google Scholar 

  64. J. W. Modestino and K. R. Matis, Interactive simulation of digital communications systems, IEEE J. Select. Areas Commun. SAC-2, 51–76 (1984).

    Article  Google Scholar 

  65. W. D. Rummler, R. P. Coutts, and M. Liniger, Multipath fading channel models for microwave digital radio, IEEE Commun. Mag. 24(11), 30–42 (1986).

    Article  Google Scholar 

  66. W. D. Rummler and M. Liniger, Propagation impairments, in F. Ivanek (ed.), Terrestrial Digital Microwave Communication, Artech House, Norwood, MA (1989).

    Google Scholar 

  67. W. D. Rummler, A new selective fading model: Application to propagation data, Bell Syst. Tech. J. 58(5), 1037–1071 (1979).

    MATH  Google Scholar 

  68. P. Balaban, Statistical models for amplitude and delay of selective fading, AT&T Tech. J. 64(10), 2525–2550 (1985).

    Google Scholar 

  69. D. C. Cox, Delay Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment, IEEE Trans. Ant. Prop. AP-20(5), 625–635 (1972).

    Article  Google Scholar 

  70. B. Glance and L. J. Greenstein, Frequency-selective fading effects in digital mobile radio with diversity combining, IEEE Trans. Commun.’ COM-31(9), 1085–1094 (1983).

    Google Scholar 

  71. R. W. Lorenz, J. de Weck, and P. Merki, Power delay profiles measured in mountainous terrain, in Proc. Vehicular Technology Conference 88, pp. 105–112, September, 1988.

    Google Scholar 

  72. W. C. Jakes (ed.), Microwave Mobile Communications, Wiley, New York (1974).

    Google Scholar 

  73. E. F. Casas and C. Leung, A simple digital fading simulator for mobile radio, in Proc. Vehicular Technology Conference 88, pp. 212–217, September, 1988.

    Google Scholar 

  74. T. S. Rappaport, S. Y. Seidel, and K. Takamizawa, “Statistical channel impulse response models for factory and open plan building radio communication system design,” IEEE Trans. Commun. 39(5), 794–807 (1991).

    Article  Google Scholar 

  75. W. Turin, Performance Analysis of Digital Transmission Systems,Computer Science Press, Rockville, MD (1990).

    Google Scholar 

  76. E. N. Gilbert, Capacity of a burst-noise channel, Bell Syst. Tech. J. 39, 1253–1266 (1960).

    Google Scholar 

  77. D. Bertsekas and R. G. Gallager, Data Networks, Prentice-Hall, Englewood Cliffs, NJ (1987).

    Google Scholar 

  78. M. Schwartz, Telecommunication Networks, Addison-Wesley, Reading, MA (1987).

    Google Scholar 

  79. IEEE J. Selected AreasCommun.SAC-2(1), January (1984); 6(1), January (1988).

    Google Scholar 

  80. M. Ilyas and H. T. Mouftah, Performance evaluation of computer communications networks, IEEE Commun. Mag. 23, 18–29 (1985).

    Article  Google Scholar 

  81. C. H. Sauer and E. A. MacNair, Simulation of Computer Communication Systems, Prentice-Hall, Englewood Cliffs, NJ (1983).

    Google Scholar 

  82. A. van der Ziel, Noise, Prentice-Hall, Englewood Cliffs, NJ (1954).

    Google Scholar 

  83. D. Middleton, Man-made noise in urban environments: Models and measurements, IEEE Trans. Veh. Technol. VT-22, 148–157 (1973).

    Article  Google Scholar 

  84. J. W. Modestino and B. Sankur, Modeling and simulation of ELF/VLF noise, Proc. 7th Ann. Conf. Modeling & Simulation, Pittsburgh, PA, April, 1976.

    Google Scholar 

  85. J. W. Modestino and B. Sankur, Analysis and modeling of impulsive noise, Arch. Elek. Ubertragung. 35(12), 481–488 (1981.).

    Google Scholar 

  86. R. E. Ziemer, Error probabilities due to additive combinations of Gaussian and impulsive noise, IEEE Trans. Commun. COM-15(3), 471–474 (1967).

    Google Scholar 

  87. S. Oshita and K. Feher, Performance of coherent PSK and DPSK systems in an impulsive and Gaussian noise environment, IEEE Trans. Commun. COM-30(12), 2540–2546 (1982).

    Article  Google Scholar 

  88. B. Sankur and J. W. Modestino, Performance of receivers in impulsive noise, Arch. Elek. Ubertragung. 36(3), 111–118 (1982).

    Google Scholar 

  89. R. G. Gallager, Information Theory and Reliable Communication, Wiley, New York (1968).

    MATH  Google Scholar 

  90. E. Berlekamp, Algebraic. Coding Theory, McGraw-Hill, New York (1968).

    MATH  Google Scholar 

  91. G. C. Clark, Jr. and J. B. Cain, Error-Correction Coding for Digital Communications, Plenum Press, New York (1981).

    Google Scholar 

  92. S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and Applications, Prentice-Hall, Englewood Cliffs, NJ (1983).

    Google Scholar 

  93. G. D. Forney, Jr., Convolutional codes I: Algebraic structure, IEEE Trans. Inf. Theory 11–16(6), 720–738 (1970).

    Article  MathSciNet  Google Scholar 

  94. A. J. Viterbi, Principles of Coherent Communication, McGraw-Hill, New York (1966).

    Google Scholar 

  95. R. C. Tausworthe, Theory and Practical Design of Phase-locked Receivers, Vol. I, Jet Propulsion Lab., Tech. Rep. No. 32–819, February 15, 1966.

    Google Scholar 

  96. F. M. Gardner, Phaselock Techniques, Wiley, New York (1966).

    Google Scholar 

  97. W. C. Lindsey and M. K. Simon, Telecommunication Systems Engineering, Prentice-Hall, Englewood Cliffs, NJ (1973).

    Google Scholar 

  98. L. E. Franks, Synchronization subsystems: Analysis and design, in Digital Communications: Satellite/Earth Station Engineering,Prentice-Hall, Englewood Cliffs, NJ (1981).

    Google Scholar 

  99. W. C. Lindsey and C. M. Chie, A survey of digital phase-locked loops, Proc. IEEE 69(4), 410–431 (1981).

    Article  Google Scholar 

  100. P. Wintz and E. J. Luecke, Performance of optimum and suboptimum synchronizers, IEEE Trans. Commun. Technol. COM-17(3), 380–389 (1969).

    Article  Google Scholar 

  101. IEEE Transactions on Communications, Special Issue on Spread Spectrum Communications COM-25(8), August (1977).

    Google Scholar 

  102. R. A. Scholtz, The spread spectrum concept, in Ref. 99, pp. 748–755.

    Google Scholar 

  103. IEEE Transactions on Communications, Special Issue on Spread Spectrum Communications COM-30(8), May (1982).

    Google Scholar 

  104. R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, Theory of spread-spectrum communications—A tutorial, in Ref. 100, pp. 855–884.

    Google Scholar 

  105. IEEE Journal of Selected Areas in Communication, special Issue on Progress in Military Communications-I, SAC-3(5), September (1985).

    Google Scholar 

  106. R. E. Ziemer and R. L. Peterson, Digital Communications and Spread Spectrum Systems, MacMillan, New York (1985).

    Google Scholar 

  107. M. K. Simon, J. K. Omura, R. A. Scholitz, and B. K. Levitt, Spread Spectrum Communications, Vols. I, II, III, Computer Science Press, Rockville, MD (1985), (1986).

    Google Scholar 

  108. S. H. Lebowitz and S. A. Rhodes, Performance of coded 8PSK signaling for satellite communications, Proc. Intern. Conf. Commun. (ICC’81), Conf. Rec, pp. 4741–47412, Denver, CO, June 14–18, 1981.

    Google Scholar 

  109. J. Hui and R. J. F. Fang, Convolutional code and signal waveform design for bandlimited satellite channels, Proc. Intern. Conf. Commun. (ICC ‘81), Conf. Rec. pp. 4751–47510, Denver, CO, June 14–18, 1981.

    Google Scholar 

  110. G. Ungerboeck, Channel coding with multilevel/phase Signals, IEEE Trans Inf. Theory IT-28(1), 55–67 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  111. G. D. Forney, Jr., R. G. Gallager, G. R. Lang, F. M. Longstaff, and S. U. Qureshi, Efficient modulation for band-limited channels, IEEE J. Selected Areas Commun. SAC-2, 632–647 (1984).

    Article  Google Scholar 

  112. G. Ungerboeck, Trellis-coded modulation with redundant signal sets, IEEE Commun. Mag. 25(2), February, 1987, Part I, Introduction, pp. 5–11, Part II, State of the art, pp. 12–21.

    Google Scholar 

  113. S. L. Sayegh, A class of optimum block codes in signal space, IEEE Trans. Commun. COM-34(10), 1043–1045 (1986).

    Article  MathSciNet  Google Scholar 

  114. S. Benedetto, M. Ajmone Marsan, G. Albertengo, and E. Giachin, Combined coding and modulation: Theory and applications, IEEE Trans. Inf. Theory 34(2), 223–236 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  115. J. B. Anderson and J. R. Lesh, Guest editors’ prologue, pp. 185–186, Special Section on Combined Modulation and Encoding, IEEE Trans. Commun. COM-29(3), March (1981), pp. 185–186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jeruchim, M.C., Balaban, P., Shanmugan, K.S. (1992). Modeling of Communication Systems. In: Simulation of Communication Systems. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3298-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3298-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6451-1

  • Online ISBN: 978-1-4615-3298-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics