Skip to main content

Representation of Signals and Systems in Simulation

  • Chapter
Simulation of Communication Systems

Part of the book series: Applications of Communications Theory ((ACTH))

  • 315 Accesses

Abstract

This chapter deals with the analysis of a system driven by deterministic (or test) signals. In a generally accepted definition of analysis there are three key words: the excitation, the system, and the response. System analysis and simulation are concerned with determining the response given the excitation of the system. In the system design stage the problem is to synthesize the system given the excitation and response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Papoulis, Signal Analysis, McGraw-Hill, New York (1977).

    MATH  Google Scholar 

  2. A. V. Oppenheim, A. S. Willsky, and I. T. Young, Signals and Systems, Prentice-Hall, Englewood Cliffs, NJ (1983).

    Google Scholar 

  3. R. E. Ziemer, W. H. Tranter, and D. R. Fannina, Signals and Systems: Continuous and Discrete, Macmillan, New York (1983).

    Google Scholar 

  4. R. J. Schwarz and B. Friedland, Linear Systems, McGraw-Hill, New York (1965).

    Google Scholar 

  5. C. D. McGillem and G. R. Cooper, Continuous and Discrete Signal and System Analysis, Holt, Rinehart and Winston, New York (1974).

    Google Scholar 

  6. R. A. Gabel and R. A. Roberts, Signals and Linear Systems, 2nd ed., Wiley, New York (1980).

    Google Scholar 

  7. A. Papoulis, The Fourier Integral and Its Applications, McGraw-Hill, New York (1962).

    MATH  Google Scholar 

  8. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd. ed., McGraw-Hill Electrical and Electronic Engineering Series, McGraw-Hill, New York (1978).

    Google Scholar 

  9. H. Urkowitz, Signal Theory and Random Processes, Artech House, Dedham, MA (1983).

    Google Scholar 

  10. A. D. Whalen, Detection of Signals in Noise, Academic, New York (1971).

    Google Scholar 

  11. M. Schwartz, W. R. Bennett, and S. Stein, Communication Systems and Techniques, McGraw-Hill, New York (1966).

    Google Scholar 

  12. K. S. Shanmugan, Digital and Analog Communication Systems, Wiley, New York (1979).

    Google Scholar 

  13. J. G. Proakis, Digital Communications,2nd ed., McGraw-Hill (1989).

    Google Scholar 

  14. S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory,Prentice-Hall, Englewood Cliffs, NJ (1987).

    Google Scholar 

  15. R. E. Ziemer and W. H. Tranter, Principles of Systems,Modulation, and Noise, Houghton Mifflin, Boston (1976).

    Google Scholar 

  16. A. Papoulis, Circuits and Systems, Holt, Rinehart and Winston, New York (1980).

    Google Scholar 

  17. L. Weinberg, Network Analysis and Synthesis, McGraw-Hill, New York (1962).

    Google Scholar 

  18. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation with a Table of Laplace Transformations, Springer-Verlag, Berlin (1974).

    Book  Google Scholar 

  19. M. S. Ghaussi and K. R. Laker, Modern Filter Design,Prentice-Hall, Englewood Cliffs, NJ (1981).

    Google Scholar 

  20. M. E. Van Valkenburg, Analog Filter Design,Holt, Rinehart and Winston, New York (1982).

    Google Scholar 

  21. E. Christian and E. Eisenmann, Filter Design Tables and Graphs,Wiley, New York (1966).

    Google Scholar 

  22. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1975).

    Google Scholar 

  23. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing,Prentice-Hall, Englewood Cliffs, NJ (1977).

    Google Scholar 

  24. E. I. Jury, Theory and Application of the z-Transform Method, Wiley, New York (1964).

    Google Scholar 

  25. B. Gold and C. M. Rader, Digital Processing of Signals,Lincoln Laboratory Publications, McGraw-Hill, New York (1969).

    Google Scholar 

  26. A. Antoniou, Digital Filters: Analysis and Design. McGraw-Hill Series in Electrical Engineering. McGraw-Hill, New York (1979).

    Google Scholar 

  27. R. W. Hamming, Digital Filters, Prentice-Hall Signal Processing Series, Prentice-Hall, Englewood Cliffs, NJ (1977).

    Google Scholar 

  28. A. Peled and B. Liu, Digital Signal Processing: Theory, Design, and Implementation, Wiley, New York (1976).

    Google Scholar 

  29. T. W. Parks and J. H. McClellan, Chebyshev approximation of nonrecursive digital filters with linear phase, IEEE Trans. Circuit Theory CT-19, March (1972), pp. 189–194.

    Article  Google Scholar 

  30. E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ (1974).

    Google Scholar 

  31. R. C. Singleton, An algorithm for computing the mixed radix fast Fourier transform, IEEE Trans. Audio Electroacoust. AU-17(2), 93–103 (1969).

    Article  Google Scholar 

  32. J. B. Knowles and E. M. Olcayto, Coefficient accuracy and digital filter response, IEEE Trans. Circuit Theory CT-15, March (1968), pp. 31–41.

    Article  Google Scholar 

  33. W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley, Reading, MA (1962).

    MATH  Google Scholar 

  34. L. Schwartz, Mathematics for the Physical Sciences, Hermann and Addison-Wesley, Reading, MA (1966).

    MATH  Google Scholar 

  35. L. A. Zadeh, Frequency analysis of variable networks, Proc. IRE 38, 291–299 (1950).

    Article  MathSciNet  Google Scholar 

  36. L. A. Zadeh, The determination of the impulsive response of variable networks, J. AppL. Phys. 21, 642–645 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  37. P. A. Bello, Characterization of randomly time-variant linear channels, IEEE Trans. Commun. Syst. CS-Ii, 360–393 (1963).

    Google Scholar 

  38. T. Kailath, Channel characterization: Time-variant dispersive channels, in E. J. Baghdady (ed.), Lectures on Communication System Theory, McGraw-Hill, New York (1961).

    Google Scholar 

  39. H. D’Angelo, Linear Time-Varying Systems: Analysis and Synthesis,Allyn and Bacon, Boston (1970).

    MATH  Google Scholar 

  40. A. R. Stubberud, Analysis and Synthesis of Linear Time-Variable. Systems,University of California Press, Berkeley (1964).

    MATH  Google Scholar 

  41. J. B. Cruz and M. E. Van Valkenburg, Signals in Linear Circuits,Houghton Mifflin, Boston (1975).

    Google Scholar 

  42. S. Mal’chikov, On the synthesis of linear automatic control systems with variable parameters, Automation Remote Control 20, 255–262 (1959).

    Google Scholar 

  43. D. I. Gladkov and S. Mal’chikov, On the synthesis of linear automatic control systems, Automation Remote Control 22,263–270 (1961).

    MATH  Google Scholar 

  44. J. B. Cruz and M. E. Van Valkenburg, The Synthesis of Models for Time-Varying Linear Systems, Proceedings of the Symposium on Active Networks and Feedback Systems, Polytechnic Press, Polytechnic Institute of Brooklyn, New York (1960), pp. 527–544.

    Google Scholar 

  45. J. B. Minkoff, Wideband operation of nonlinear solid state power amplifiers-Comparison of calculations and measurements, AT&T Bell Labs Tech. J. 63(2), 231–248 (1984).

    Google Scholar 

  46. A. J. Cann, Nonlinearity model with variable knee sharpness, IEEE Trans. Aerosp. Electron Syst. 16(6), 874–877 (1980).

    Article  Google Scholar 

  47. H. B. Poza, Z. A. Sarkozy, and H. L. Berger, A Wideband Data Link Computer Simulation Model, Proc. NAECON Conf., 1975.

    Google Scholar 

  48. A. A. M. Saleh, Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers, IEEE Trans. Commun. COM-29(11), 1715–1720 (1981).

    Google Scholar 

  49. M. T. Abuelma’atti, Frequency-dependent nonlinear quadrature model for TWT amplifiers, IEEE Trans. Commun. COM-32(8), 982–986 (1984).

    Article  MathSciNet  Google Scholar 

  50. R. Blum and M. C. Jeruchim, Modeling Nonlinear Amplifiers for Communication Simulation, Conference Record of the IEEE Inter Conf. on Communication, ICC ‘89, Boston, June 89.

    Google Scholar 

  51. D. D. Siljak, Nonlinear Systems, Wiley, New York (1969).

    MATH  Google Scholar 

  52. N. M. Blachman, Bandpass nonlinearities, IEEE Trans. Inf. Theory IT-10,162–164 (1964).

    Article  MATH  Google Scholar 

  53. N. M. Blachman, Detectors, bandpass nonlinearities and their optimization: Inversion of the Chebyshev Transform, IEEE Trans. Inf. Theory IT-17(4), 398–404 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  54. V. Volterra, Theory of Functionals and of Integral and Integro-Differential Equations, Dover, New York (1959).

    MATH  Google Scholar 

  55. S. P. Boyd, Volterra series: Engineering fundamentals, Ph.D. dissertation, Univ. of Calif., Berkeley, May 1985.

    Google Scholar 

  56. J. J. D’Azzo and C. H. Houpis, Feedback. Control System Analysis and Synthesis, 2nd Edition, McGraw-Hill, New York (1966).

    MATH  Google Scholar 

  57. C. L. Johnson, Analog Computer Techniques, 2nd ed., McGraw-Hill, New York (1963).

    Google Scholar 

  58. D. Quinney, An Introduction to the Numerical Solution of Di f ferential Equations, Research Studies Press Ltd, Lechtworth, England (1985).

    Google Scholar 

  59. P. Henrici, Elements of Numerical Analysis, John Wiley, New York (1964).

    MATH  Google Scholar 

  60. W. J. McCalla, Fundamentals of Computer Aided Circuit Simulation, Kluwer Academic Publishers, Norwell, ME (1988).

    Google Scholar 

  61. J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design, Van Nostrand Reinhold, New. York. (1983).

    Google Scholar 

  62. V. Raman and K. Abbas, Simulation of closed loop systems: Computability vs. stability, in Proc. Miami IEEE Technicon, pp. 114–117, October 1987.

    Google Scholar 

  63. V. Raman and K. Abbas, Explicit multistep methods for system simulation, in Symposium Proceedings ISCAS, Portland, Oregon, May 1989, pp. 1792–1795.

    Google Scholar 

  64. A. A. M. Saleh, Nonlinear models of traveling-wave optical amplifiers, lEE Electron. Lett. 24(14), 835–837 (1989).

    Article  Google Scholar 

  65. A. Elrefaie and C. Lin, Performance degradations of multigigabit-per-second NRZ/RZ lightwave systems due to gain saturation in traveling-wave semiconductor optical amplifiers, IEEE Photon. Technol. Lett. 1(10), 300–302 (1989).

    Article  Google Scholar 

  66. A. A. M. Saleh, Modeling of nonlinearity in semiconductor optical amplifiers, in Conference Record, IEEE Global Telecommunications Conf., Dallas, TX, Nov. 27–30, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jeruchim, M.C., Balaban, P., Shanmugan, K.S. (1992). Representation of Signals and Systems in Simulation. In: Simulation of Communication Systems. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3298-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3298-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6451-1

  • Online ISBN: 978-1-4615-3298-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics