Skip to main content

Methods for Electrical Resistivity Measurement Applicable to Medium and Good Electrical Conductors

  • Chapter
Compendium of Thermophysical Property Measurement Methods
  • 675 Accesses

Abstract

Among the various methods of investigating physical properties of solids, the measurement of electrical conductivity is one of the most currently used and a large variety of procedures have thus been developed over the last ten years. Hence the experimenter will often be faced by the choice of the most suitable technique owing to the nature of the conduction process, the range of electrical conductivity expected to be reached during experiments, the size and shape of the samples to be investigated, or also their chemical reactivity with respect to the sample holders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Brook, W.L. Pelzman, and F.A. Kröger, J. Electrochem. Soc. 118 185 (1971).

    Article  Google Scholar 

  2. J. Maluenda, Thesis, University of Paris 6 (1979).

    Google Scholar 

  3. K.J. Euler, R. Kirchhof, and H. Metzendorf, Mat. Chem. 4, 611 (1979).

    Article  Google Scholar 

  4. K. Shahi and S. Chandra, J. Phys. C 8 2255 (1975).

    Article  ADS  Google Scholar 

  5. S. Pizzini, in: Fast Ion Transport in Solids (W. Van Gool, ed.), p.461, North-Holland, Amsterdam (1973).

    Google Scholar 

  6. F.A. Kröger, The Chemistry of Imperfect Crystals 2nd ed., North-Holland, Amsterdam (1974).

    Google Scholar 

  7. R.G. Linford and S. Hackwood, Chem. Rev. 81, 327 (1981).

    Article  Google Scholar 

  8. B. Scrosati, G. Germano, and G. Pistoia, J. Electrochem. Soc. 118, 86 (1971).

    Article  Google Scholar 

  9. J.S. McKechnie, L.D.S. Turner, C.A. Vincent, M. Lazzari, and B. Scrosati, J. Chem. Educ. 55, 418 (1978).

    Article  Google Scholar 

  10. B. Calès, Ph.D. Thesis, University of Orléans, France (1983).

    Google Scholar 

  11. N.H. Chan, R.K. Sharma, and D.M. Smyth, J. Electrochem. Soc. 128, 1762 (1981).

    Article  Google Scholar 

  12. W. Crawford Dunlap, in: Methods of Experimental Physics (K. Lark Horovitz and V.A. Johnson, eds.), Vol. 6, Part B, p. 32, Academic Press, New York (1959).

    Google Scholar 

  13. I. Warshawsky, Rev. Sci. Instrum. 26, 711 (1955).

    Article  ADS  Google Scholar 

  14. L.J. Van der Pauw, Philips Res. Rep. 13, 1 (1958).

    Google Scholar 

  15. D. Panis, Thesis, University of Orléans, France (1976).

    Google Scholar 

  16. A. Casalot, Ph.D. Thesis, University of Bordeaux, France (1968); J.P. Bonet, Ph.D. Thesis, University of Bordeaux, France (1980).

    Google Scholar 

  17. J.P. Loup and A.M. Anthony, Rev. Int. Hautes Temp. Refract. 115 (1964).

    Google Scholar 

  18. J.E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969).

    Article  ADS  Google Scholar 

  19. R. Fletcher and M.J.D. Powell Computer J. 5, 163 (1963).

    Article  MathSciNet  Google Scholar 

  20. P. Abélard, Ph.D. Thesis, University of Orléans (1983).

    Google Scholar 

  21. C.J.F. Böttcher and P. Bordewijk, Theory of Electrical Polarization Vol. 3, Elsevier, Amsterdam (1978).

    Google Scholar 

  22. T. Wong and M. Brodwin, Solid State Commun. 36, 503 (1980).

    Article  ADS  Google Scholar 

  23. W. Schirmacher, Solid State Commun. 39, 893 (1981).

    Article  ADS  Google Scholar 

  24. V. Srivastana and M. Chaturvedi, Z. Phys. B 48, 351 (1982).

    Article  ADS  Google Scholar 

  25. M.I. Chekunaev and V.N. Fleurov, J. Phys. C 17, 2917 (1984).

    Article  ADS  Google Scholar 

  26. L.M. Levinson (ed.), Grain Boundary Phenomena in Electronic Ceramics, Advances in Ceramics Vol. 1, The American Ceramic Society, Columbus, Ohio (1981).

    Google Scholar 

  27. D.V. Lan, J. AppL Phys. 45, 3023 (1974).

    Article  ADS  Google Scholar 

  28. A.D. Franklin, J. Am. Ceram. Soc. 58, 465 (1975).

    Article  Google Scholar 

  29. E. Schouler, Ph.D. Thesis, University of Grenoble (1979).

    Google Scholar 

  30. E. Warburg, Ann. Phys. (Leipzig) 6, 125 (1901).

    ADS  MATH  Google Scholar 

  31. A.H. Sharbough and S. Roberts, in Ref. 12, p. 1.

    Google Scholar 

  32. F. I. Mopsik, Rev. Sci. Instrum. 55, 79 (1984).

    Article  ADS  Google Scholar 

  33. C. Tubandt, Z. Anorg. Ailgem. Chem. 115, 105 (1920).

    Article  Google Scholar 

  34. C. Tubandt and A.B. Lidiard, in: Handbuch der Physik (S. Flugge, ed.), Vol. 20, p. 246, Springer-Verlag, Berlin (1957).

    Google Scholar 

  35. F. Morin, Solid State Ionics 12, 407 (1984).

    Article  Google Scholar 

  36. M. Gauthier, M. Duclot, A. Hammou, and C. Déportes, J. Solid State Chem. 9, 15 (1974).

    Article  ADS  Google Scholar 

  37. M. Duclot and C. Déportes, J. Solid State Chem. 30, 231 (1979).

    Article  ADS  Google Scholar 

  38. F. Bénière, in: Physics of Electrolytes (J. Hladik, ed.), Academic Press, New York (1972).

    Google Scholar 

  39. L. Heyne, J. Electrochim. Acta 15, 1251 (1970).

    Article  Google Scholar 

  40. W.L. Worrell, Top. AppL Phys. 21, 143 (1977).

    Article  Google Scholar 

  41. J.B. Wagner, in: Electrode Processes in Solid State Ionics (M. Kleitz and J. Dupuy, eds.), p. 185, D. Reidel, Dordrecht (1976).

    Chapter  Google Scholar 

  42. C.Z. Wagner, Elektrochem. 4, 60 (1956).

    Google Scholar 

  43. H. Rickert, Angew. Chem., Int. Ed. Engl. 17, 37 (1978).

    Article  Google Scholar 

  44. D.O. Raleigh, in: Progress in Solid State Chemistry (H. Reiss, ed.), p. 3, North-Holland, Amsterdam (1963).

    Google Scholar 

  45. J.H. Kennedy, J. Electrochem. Soc. 124, 865 (1977).

    Article  Google Scholar 

  46. J.W. Patterson, E.C. Bogren, and R.A. Rapp, J. Electrochem. Soc. 114, 752 (1967).

    Article  Google Scholar 

  47. L. Heyne, Mass Transport in Oxides National Bureau of Standard, Special Publication No. 296, p. 149 (1968).

    Google Scholar 

  48. H.L. Tuller, in: Nonstoichiometric Oxides (O.T. Sørensen, ed.), p. 271, Academic Press, New York (1981).

    Chapter  Google Scholar 

  49. P. Kofstad, Nonstoichiometry Diffusion and Electrical Conductivity in Binary Metal Oxides Wiley Interscience, New York (1972).

    Google Scholar 

  50. J. Fouletier, P. Fabry, and M. Kleitz, J. Electrochem. Soc. 123, 204 (1976).

    Article  Google Scholar 

  51. O. Kubaschewski, E.L.L. Evans, and C.B. Alcock, Metallurgical Thermochemistry 4th ed., Pergamon Press, London (1967).

    Google Scholar 

  52. K. Schwerdtfeger and E.T. Turkdogan, in: Physico-chemical Measurements in Metals Research (R.A. Rapp, ed.), Vol. 4, Part 1, p. 321, Wiley, New York (1970).

    Google Scholar 

  53. P. Fabry, M. Kleitz, and C. Déportes, J. Solid State Chem. 5, 1 (1972).

    Article  ADS  Google Scholar 

  54. P. Fabry, Ph.D. Thesis, University of Grenoble, France (1976).

    Google Scholar 

  55. H.J. de Bruin, A.F. Moodie, and C.E. Warble, Gold Bull. 5, 62 (1972).

    Article  Google Scholar 

  56. H.J. de Bruin, A.F. Moodie, and C.E. Warble, J. Mater. Sci. 7, 909 (1972).

    Article  ADS  Google Scholar 

  57. J. Fouletier, Ph.D. Thesis, University of Grenoble, France (1976).

    Google Scholar 

  58. M. Gauthier, A. Belanger, Y. Meas, and M. Kleitz, in: Solid Electrolytes (P. Hagenmuller and W. van Gool, eds.), p.497, Academic Press, New York (1978).

    Google Scholar 

  59. M. Kleitz, E. Fernandez, J.F. Fouletier, and P. Fabry, in: Science and Technology of Zirconia (A.H. Heuer and L.W. Hobbs, eds.), p. 349, The American Ceramic Society, Columbus, Ohio (1981).

    Google Scholar 

  60. E. Fernandez, Ph.D. Thesis, University of Grenoble, France (1980).

    Google Scholar 

  61. M. Iwase and T. Mori, Metal. Trans. 9B, 365 (1978).

    Google Scholar 

  62. B. Calès and J.F. Baumard, J. Mater. Sci. 17, 3243 (1982).

    Article  ADS  Google Scholar 

  63. A.M. Anthony, in Ref. 59, p. 437.

    Google Scholar 

  64. A. Ounalli, Thesis, University of Orléans, France (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Calès, B., Abélard, P. (1992). Methods for Electrical Resistivity Measurement Applicable to Medium and Good Electrical Conductors. In: Maglić, K.D., Cezairliyan, A., Peletsky, V.E. (eds) Compendium of Thermophysical Property Measurement Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3286-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3286-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6445-0

  • Online ISBN: 978-1-4615-3286-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics