Advertisement

Lateral Surface Superlattices

  • David K. Ferry
  • Robert O. Grondin
Part of the Microdevices book series (MDPF)

Abstract

As semiconductor technology continues to pursue the scaling down of integrated circuit dimensions into the submicron and ultrasubmicron regimes, many novel and interesting questions will emerge concerning the physics of charged particles in semiconductors. One of the more important topics to be considered is that of carrier confinement in structures that reduce the dimensionality of the system. Notable among these structures are MOS quantized inversion layers discussed in previous chapters and the heterojunction superlattice. In particular, the fabrication of the quantum well superlattice has been possible due to the advent of MBE and MOCVD technology, which we have discussed previously.

Keywords

Landau Level Inversion Layer Periodic Potential Negative Differential Conductivity Bloch Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 (1970).CrossRefGoogle Scholar
  2. 2.
    R. T. Bate, Bull. Am. Phys. Soc. 22, 407 (1977).Google Scholar
  3. 3.
    D. K. Ferry, Phys. Stat. Solids (b) 106, 63 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    A. C. Warren, D. A. Antoniadis, H. I. Smith, and J. Meingailis, in: IEEE Electron Devices Meeting Technical Digest, p. 866, IEEE Press, New York (1984). See also the work of M. Wassermeier, H. Pohlmann, and J. P. Kotthaus, in: 18th Int. Conf on the Physics of Semiconductors (O. Engstri5m, ed.), World Scientific Press, Singapore, Vol. 1, p. 441 (1987). This latter work clearly shows the presence of the minibands through measurements of the density of states in a high magnetic field.Google Scholar
  5. 5.
    G. J. Iafrate, D. K. Ferry, and R. K. Reich, Surf. Sci. 113, 485 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    G. Bernstein and D. K. Ferry, Superlatt. Microstruct. 2, 373 (1986); U.S. Patent 4,872,038.ADSCrossRefGoogle Scholar
  7. 7.
    A. B. Pippard, Phil. Trans. Roy. Soc. London A68, 317 (1964).ADSGoogle Scholar
  8. 8.
    M. Ya. Azbel, J. Exp. Theor. Phys. 46, 929 (1964) [transl., Son Phys. JETP 19, 634 (1964)].Google Scholar
  9. 9.
    A. Rauh, G. H. Wannier, and G. Obermair, Phys. Stat. Solids (b) 63, 215 (1974).ADSCrossRefGoogle Scholar
  10. 10.
    D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann, in: High Magnetic Fields in Semiconductor Physics II (G. Landwehr, ed.), pp. 357–365, Springer-Verlag, Heidelberg (1988).Google Scholar
  11. 11.
    R. R. Gerhardts, D. Weiss, and K. von Klitzing, Phys. Rev. Lett. 62, 1173 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    R. W. Winkler, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 62, 1177 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    H. J. Schellnhuber, and G. M. Obermair, Phys. Rev. Lett. 45, 276 (1980).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    P. Beeton, E. S. Alves, M. Hennini, L. Eaves, P. C. Main, O. H. Hughes, G. A. Toombs, S. P. Beaumont, and C. D. W. Wilkinson, Proc. Symp. on New Phenomena in Mesoscopic Systems, Kona, Hawaii, Jpn. Soc. Promotion Sci., unpublished (1989); E. Paris, J. Ma, A. M. Kriman, D. K. Ferry, and E. Barbier, J. Phys. Cond. Matter, in press.Google Scholar
  15. 15.
    M. Ya. Azbel, J. Exp. Theor. Phys. 44, 980 (1963) [transl., Soy. Phys. JETP 17, 665 (1963)].Google Scholar
  16. 16.
    P. G. Harper, Proc. Phys. Soc., London, A68, 874 (1955).ADSGoogle Scholar
  17. 17.
    D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).ADSCrossRefGoogle Scholar
  18. 18.
    D. K. Ferry, G. Bernstein, R. Puechner, J. Ma, A. M. Kriman, R. Mezenner, W. P. Liu, G. N. Maracas, and R. Chamberlin, in: High Magnetic Fields in Semiconductor Physics II (G. Landwehr, ed.), pp. 344–352, Springer-Verlag, Heidelberg (1988).Google Scholar
  19. 19.
    J. Zak, Phys. Rev. 134, A1602, A1607 (1964).Google Scholar
  20. 20.
    P. A. Lebwohl and R. Tsu, J. AppL Phys. 41, 2664 (1970).ADSCrossRefGoogle Scholar
  21. 21.
    R. K. Reich, R. O. Grondin, and D. K. Ferry, Phys. Rev. B 27, 3483 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    R. O. Grondin, W. Porod, J. Ho, D. K. Ferry, and G. J. lafrate, Superlatt. Micros truct. 1, 183 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    R. F. Kazarinov and R. A. Sufis, Soy. Phys. Semicond. 5, 707 (1971).Google Scholar
  24. 24.
    J. B. Krieger and G. J. lafrate, Phys. Rev. B 33, 5494 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    E. E. Mendez, F. Agullo-Rueda, and J. M. Hong, Phys. Rev. Lett. 60, 2426 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David K. Ferry
    • 1
  • Robert O. Grondin
    • 1
  1. 1.College of Engineering and Applied Science Center for Solid State Electronics ResearchArizona State UniversityTempeUSA

Personalised recommendations