Advertisement

Transient Hot-Carrier Transport

  • David K. Ferry
  • Robert O. Grondin
Part of the Microdevices book series (MDPF)

Abstract

When a system with many time constants is excited by a temporally varying forcing function, the system’s response can exhibit a variety of features such as overshoots, undershoots, and phase shifts. When the forcing function varies slowly on the scale of the time constants, it is common to use quasi-static analysis techniques in which the instantaneous time-varying response is modeled by using the steady-state response of the system to a constant forcing function equal in magnitude to the actual instantaneous forcing function. For the transport problems considered here, the system is an ensemble of carriers embedded in a set of energy bands and interacting with a phonon bath. The time constants include energy and momentum relaxation times or various scattering rates, the forcing function is the electric field, and the response of greatest interest is the ensemble average carrier velocity. The quasi-static analysis technique is the use of a steady-state drift-diffusion transport law. The response of the ensemble in situations where this steady-state or quasi-static analysis is inappropriate is called the transient dynamic response (TDR). Describing carrier transport in the TDR regime is the central topic of this chapter.

Keywords

Transmission Line Monte Carlo Study Ballistic Transport Boltzmann Transport Equation Velocity Overshoot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, e.g., the Special Issue on Hot Carrier Effects in Short-Channel Devices, IEEE Trans. Electron Dev. ED-28, August (1981).Google Scholar
  2. 2.
    See, e.g., H. Grubin, in: Physics of Submicron Devices (H. L. Grubin, D. K. Ferry, and C. Jacoboni, eds.), Plenum, New York (1988).Google Scholar
  3. 3.
    J. G. Ruch, IEEE Trans. Electron Dev. ED-19, 652 (1972).CrossRefGoogle Scholar
  4. 4.
    M. Brauer, Phys. Stat. Sol. (b) 81, 147 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    T. J. Maloney and J. Frey, J. Appl. Phys. 48, 781 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    S. Kratzner and J. Frey, J. Appl Phys. 49, 4064 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    G. Hill, P. N. Robson, A. Majerfeld, and W. Fawcett, Electron. Lett. 13, 235 (1977).CrossRefGoogle Scholar
  8. 8.
    D. K. Ferry and J. R. Barker, Phys. Stat. Sol. (b) 100, 683 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    K. Hess, in:Advances in Electronics and Electron Physics, Vol. 59, Academic Press, New York (1982).Google Scholar
  10. 10.
    C. Jacoboni, in: Physics of Submicron Devices (H. L. Grubin, D. K. Ferry, and C. Jacoboni, eds.), Plenum, New York (1988).Google Scholar
  11. 11.
    G. J. Iafrate and K. Hess, in: VLSI Electronics: Microstructure Science, Vol. 9 (N. G. Einspruch, ed.), Academic Press, Orlando (1985).Google Scholar
  12. 12.
    D. K. Ferry and R. O. Grondin, in: VLSI Electronics: Microstructure Science, Vol. 9 (N. G. Einspruch, ed), Academic Press, Orlando (1985).Google Scholar
  13. 13.
    T. H. Glisson, C. K. Williams, J. R. Hauser, and M. A. Littlejohn, in: VLSI Electronics: Microstructure Science, Vol. 4 (N. G. Einspruch, ed.), Academic Press, Orlando (1985).Google Scholar
  14. 14.
    W. Fawcett, A. D. Boardman, and S. Swain, J. Phys. Chem. Sol. 31, 1963 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    J. Zimmermann, P. Lugli, and D. K. Ferry, Solid-State Electron. 26, 233 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    P. Lugli, J. Zimmermann, and D. K. Ferry, J. Phys. 42 (Suppl. 10), C7–103 (1981).Google Scholar
  17. 17.
    R. O. Grondin and M. J. Kann, Solid-State Electron. 31, 567 (1988).ADSCrossRefGoogle Scholar
  18. 18.
    See, e.g., R. W. Zwanzig, in: Lectures in Theoretical Physics (W. E. Brittin, B. W. Downs, and J. Downs, eds.), Interscience, New York (1961).Google Scholar
  19. 19.
    Remember that the general N-body problem in phase space can be described by a hierarchy of coupled equations for the 1 through N particle distribution functions. To decouple the hierarchy, some additional approximation, such as molecular chaos, must be assumed. See N. N. Bogoliubov, Lectures on Quantum Statistics, Gordon and Breach, New York (1967).Google Scholar
  20. 20.
    R. Kubo, in: Lecture Note in Physics,Vol. 31,Transport Phenomena (J. Ehlers et aL, ed.), Springer-Verlag, Berlin (1974); I. Prigogine and P. Resibois, Physica 27, 629 (1961); H. J. Kreuzer, Nonequilibrium Thermodynamics and Its Statistical Foundations, Oxford University Press, London (1981). In each of these, however, (5.16) is reduced to a kernel of a relaxation integral whose form must relate to (5.17) due to the need to reduce to a master equation. Barker(21) shows the exact form.Google Scholar
  21. 21.
    J. R. Barker, J. Phys. C 6, 2663 (1973).ADSGoogle Scholar
  22. 22.
    P. N. Argyres, Phys. Rev. 132, 1527 (1961).ADSCrossRefGoogle Scholar
  23. 23.
    K. K. Thornber, Phys. Rev. B 3, 1929 (1971).ADSCrossRefGoogle Scholar
  24. 24.
    D. K. Ferry, in: Physics of Nonlinear Transport in Semiconductors (D. K. Ferry, J. R. Barker, and C. Jacoboni, eds.), Plenum, New York (1980).CrossRefGoogle Scholar
  25. 25.
    D. K. Ferry and J. R. Barker, J. Phys. Chem. Sol. 41, 1083 (1980).ADSCrossRefGoogle Scholar
  26. 26.
    P. Price, Solid-State Electron. 21, 9 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    D. K. Ferry, in: Handbook of Semiconductors, Vol. 1 (W. Paul, ed.), North-Holland, Amsterdam (1980).Google Scholar
  28. 28.
    J. R. Barker and D. K. Ferry, Phys. Rev. Lett. 42, 1779 (1979).ADSCrossRefGoogle Scholar
  29. 29.
    H. F. Budd, Phys. Rev. 158, 798 (1967).ADSCrossRefGoogle Scholar
  30. 30.
    J. Klafter and R. Silbey, Phys. Rev. Lett. 44, 55 (1980).ADSCrossRefGoogle Scholar
  31. 31.
    V. M. Kenkre, E. W. Montroll, and M. F. Schlesinger, J. Stat. Phys. 9, 45 (1973).ADSCrossRefGoogle Scholar
  32. 32.
    H. J. Kreuzer, Nonequilibrium Thermodynamics and Its Statistical Foundations, Oxford University Press, London (1981).Google Scholar
  33. 33.
    D. N. Zubarev, Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New York (1974).Google Scholar
  34. 34.
    R. W. Zwanzig, Phys. Rev. 124, 983 (1961); see also R. Zwanzig, K. S. J. Nordholm, and W. C. Mitchell, Phys. Rev. B 6, 1226 (1972).Google Scholar
  35. 35.
    J. R. Barker, in: Physics of Nonlinear Transport in Semiconductors (D. K. Ferry, J. R. Barker, and C. Jacoboni, eds.), Plenum, New York (1980).Google Scholar
  36. 36.
    P. J. Price, in: Fluctuation Phenomena in Solids (R. E. Burgess, ed.), p. 355, Academic Press, New York (1965).Google Scholar
  37. 37.
    P. Lugli and D. K. Ferry, IEEE Trans. Electron Dev. ED-32, 2431 (1985).CrossRefGoogle Scholar
  38. 38.
    O. Madelung, Introduction to Solid State Physics, Springer, Berlin (1978).CrossRefGoogle Scholar
  39. 39.
    S. Bosi and C. Jacoboni, J. Phys. C 9, 315 (1976).ADSCrossRefGoogle Scholar
  40. 40.
    B. B. van Iperen and H. J. Tjassens, Proc. IEEE 59, 1032 (1971).CrossRefGoogle Scholar
  41. 41.
    K. S. Champlin and G. Eisenstein, IEEE Trans. Microwave Theory Tech. MIT-26, 31 (1978).ADSCrossRefGoogle Scholar
  42. 42.
    R. O. Grondin, P. A. Blakey, and J. R. East, IEEE Trans. Electron Dev. ED-31, 21 (1984).ADSCrossRefGoogle Scholar
  43. 43.
    A. M. Mazzone and H. D. Rees, IEE Proc. Pt. I 127, 149 (1980).Google Scholar
  44. 44.
    J. Zimmermann, Y. Leroy, and E. Constant, J. Appl. Phys. 49, 3378 (1978).ADSCrossRefGoogle Scholar
  45. 45.
    P. A. Lebwohl, J Appl Phys. 44, 1744 (1973).ADSCrossRefGoogle Scholar
  46. 46.
    H. D. Rees, IBM J. Res. Dev. 13, 537 (1969).CrossRefGoogle Scholar
  47. 47.
    H. D. Rees, J. Phys. Chem. Sol. 30, 643 (1969).ADSCrossRefGoogle Scholar
  48. 48.
    W. Fawcett, in: Electrons in Crystalline Solids, International Atomic Energy Agency, Vienna (1973).Google Scholar
  49. 49.
    M. A. Osman and D. K. Ferry, J. Appl. Phys. 61, 5330 (1987).ADSCrossRefGoogle Scholar
  50. 50.
    D. Jones and H. D. Rees, J. Phys. C. 6, 1781 (1973).ADSCrossRefGoogle Scholar
  51. 51.
    D. Jones and H. D. Rees, Electron. Lett. 8, 363 (1972).CrossRefGoogle Scholar
  52. 52.
    R. B. Hammond, Physica B 134, 475 (1985).CrossRefGoogle Scholar
  53. 53.
    G. Mourou, K. Meyer, J. Whitaker, M. Pessot, R. Grondin and C. Caruso, in: Picosecond Electronics and Optoelectronics II, Springer Series in Electronics and Photonics, Vol. 24, p. 40, Springer-Verlag, New York (1987).CrossRefGoogle Scholar
  54. 54.
    M. C. Nuss, D. H. Auston, and F. Capasso, Phys. Rev. Lett. 58, 2355 (1987).ADSCrossRefGoogle Scholar
  55. 55.
    C. V. Shank, R. L. Fork, B. I. Greene, F. K. Reinhart, and R. A. Logan, Appl. Phys. Lett. 38, 104 (1981).ADSCrossRefGoogle Scholar
  56. 56.
    S. Ramo, Proc. IRE 27, 584 (1939).CrossRefGoogle Scholar
  57. 57.
    W. Shockley, J. Appl Phys. 9, 635 (1981).ADSCrossRefGoogle Scholar
  58. 58.
    S. Teitel and J. W. Wilkins, J. Appl Phys. 53, 5006 (1982).ADSCrossRefGoogle Scholar
  59. 59.
    S. J. Allen, C. L. Allyn, H. M. Cox, F. DeRosa, and G. E. Mahoney, Appl Phys. Lett. 42, 96 (1983).ADSCrossRefGoogle Scholar
  60. 60.
    S. J. Allen, in: Physics of Submicron Devices (H. L. Grubin, D. K. Ferry, and C. Jacoboni, eds.), Plenum, New York (1988).Google Scholar
  61. 61.
    P. Das and D. K. Ferry, Solid-State Electron. 19, 851 (1976).ADSCrossRefGoogle Scholar
  62. 62.
    G. H. Glover, J. Appl. Phys. 44, 1295 (1973).ADSCrossRefGoogle Scholar
  63. 63.
    W. Franz, Z. Naturforsch 13, 484 (1958).ADSzbMATHGoogle Scholar
  64. 64.
    L. V. Keldysh, Soy. Phys. JETP 7,778 (1958).Google Scholar
  65. 65.
    M. Osman and H. Grubin, Solid-State Electron. 31, 471 (1988).ADSCrossRefGoogle Scholar
  66. 66.
    W. Ritz and P. Kocevar, Phys. Rev. B 28, 7040 (1983).ADSCrossRefGoogle Scholar
  67. 67.
    J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, Phys. Rev. Lett. 59, 2222 (1987).ADSCrossRefGoogle Scholar
  68. 68.
    D. H. Auston, IEEE J. Quantum Electron. 19, 639 (1983).ADSCrossRefGoogle Scholar
  69. 69.
    J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, IEEE J. Quantum Elect. QE-19, 664 (1983).ADSCrossRefGoogle Scholar
  70. 70.
    K. E. Meyer, M. Pessot, G. Mourou, R. O. Grondin, and S. N. Chamoun, Appl. Phys. Lett. 53, 2254 (1988).ADSCrossRefGoogle Scholar
  71. 71.
    K. Meyer and G. Mourou, in: Picosecond Electronics and Optoelectronics,Springer Series in Electrophysics, Vol. 21 (G. Mourou, D. Bloom, and C. Lee, eds.), Springer-Verlag, New York (1985).Google Scholar
  72. 72.
    J. A. Valdmanis, Subpicosecond Electro-Optic Sampling, Ph.D. Dissertation, University of Rochester (1983).Google Scholar
  73. 73.
    D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53,1555 (1984).ADSCrossRefGoogle Scholar
  74. 74.
    A. Evan Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).ADSCrossRefGoogle Scholar
  75. 75.
    G. M. Wysin, D. L. Smith, and A. Redondo (unpublished).Google Scholar
  76. 76.
    R. Joshi, S. Chamoun, and R. O. Grondin, in: Picosecond Electronics and Optoelectronics IV (T.C. L. Gerhard Sollner and D. M. Bloom, eds.) (1989).Google Scholar
  77. 77.
    S. N. Chamoun, R. Joshi, E. N. Arnold, R. O. Grondin, K. E. Meyer, M. Pessot, and G. A. Mourou, J. Appl. Phys. 66, 236 (1989).ADSCrossRefGoogle Scholar
  78. 78.
    E. O. Kane, J. Phys. Chem. Sol. 1, 249 (1957).ADSCrossRefGoogle Scholar
  79. 79.
    M. A. Osman and D. K. Ferry, Phys. Rev B 36, 6018 (1987).ADSCrossRefGoogle Scholar
  80. 80.
    M. Rieger, P. Kocevar, P. Bordone, P. Lugli, and L. Reggiani, Solid St. Electron. 31, 687 (1988).ADSCrossRefGoogle Scholar
  81. 81.
    K. Brennan and K. Hess, Phys. Rev. B 29, 5581 (1984).ADSCrossRefGoogle Scholar
  82. 82.
    A. J. Taylor, D. J. Erskine, and C. L. Tang, J. Opt. Am. B 2, 663 (1985).ADSCrossRefGoogle Scholar
  83. 83.
    D. E. Aspnes, Phys. Rev. B 14, 5331 (1976).ADSCrossRefGoogle Scholar
  84. 84.
    V. N. Freire, A. R. Vasconcellos, and R. Luzzi, Solid. St. Commun. 66, 683 (1988).ADSCrossRefGoogle Scholar
  85. 85.
    E. N. Arnold, Time-Domain Analysis of Nonlinear Microwave Circuits Using a Frequency-Domain Description of the Linear Subnetworks, Masters Thesis, Arizona State University (1988).Google Scholar
  86. 86.
    J. F. Whitaker, R. Sobolewski, D. Dykaar, T. Hsiang, and G. Mourou, IEEE Trans. Microwave Theory Tech. 36 (1988).Google Scholar
  87. 87.
    S. Laval, C. Bru, C. Arnodo, and R. Castagne, in: IEEE Int. Electron Devices Meeting Tech. Digest, p. 626 (1980).Google Scholar
  88. 88.
    R. N. Zitter, Appl. Phys. Lett. 14, 73 (1969).ADSCrossRefGoogle Scholar
  89. 89.
    C. J. Hearn, P. T. Landsberg, and A. R. Beattie, in: Proc. Sixth Int. Conf. Physics of Semiconductors,p. 857, Inst. Physics, London (1962).Google Scholar
  90. 90.
    D. K. Ferry, Phys. Rev. B 18, 7033 (1978).ADSCrossRefGoogle Scholar
  91. 91.
    H. Brooks, in: Advance in Electronics and Electron Physics, Vol. 7, p. 85 (1955).Google Scholar
  92. 92.
    V. Heine and J. A. Van Vechten, Phys. Rev. B 13, 1622 (1976).ADSCrossRefGoogle Scholar
  93. 93.
    M. Wautelet and J. A. Van Vechten, Phys. Rev. B 23, 5551 (1981).ADSCrossRefGoogle Scholar
  94. 94.
    J. C. Inkson, J. Phys. C, 9, 117 (1976).Google Scholar
  95. 95.
    C. H. Lee, A. Antonetti, and G. Mourou, Opt. Commun. 21, 158 (1977).ADSCrossRefGoogle Scholar
  96. 96.
    J. Degani, R. F. Leheny, R. Nahory, and J. P. Heritage, Appl. Phys. Lett. 39, 569 (1981).ADSCrossRefGoogle Scholar
  97. 97.
    R. A. Hopfel, J. Shah, P. A. Wolf, and A. C. Gossard, Phys. Rev. Lett. 56, 2736 (1986).ADSCrossRefGoogle Scholar
  98. 98.
    D. D. Tang, F. F. Fang, M. Scheuermann, and T. C. Chen, Appl. Phys. Lett. 49, 1540 (1986).ADSCrossRefGoogle Scholar
  99. 99.
    M. A. Osman and H. L. Grubin, Proc. SPIE 942, 18 (1988).CrossRefGoogle Scholar
  100. 100.
    J. D. Wiley, in: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol. 10, p. 91, Academic Press, New York (1975).Google Scholar
  101. 101.
    M. D’yakonov, V. I. Perel, and I. N. Yassievich, Son Phys. Semicond. 11, 801 (1977).Google Scholar
  102. 102.
    P. Lugli, C. Jacoboni, L. Reggiani, and P. Kocevar, Appl. Phys. Lett. 50, 1521 (1987).CrossRefGoogle Scholar
  103. 103.
    R. Joshi and R. O. Grondin, J. Appl. Phys. 66, 4288 (1989).ADSCrossRefGoogle Scholar
  104. 104.
    J. R. Meyer and F. J. Bartoli, Phys. Rev. B 28, 915 (1983).ADSCrossRefGoogle Scholar
  105. 105.
    R. K. Ridley, Superlattices and Microstructures 2, 159 (1986).ADSCrossRefGoogle Scholar
  106. 106.
    M. E. Kim, A. Das, and S. D. Senturia, Phys. Rev. B 15, 6890 (1978).ADSCrossRefGoogle Scholar
  107. 107.
    H. A. Bethe, MIT Radiation Lab Rep. 43–12 (1942).Google Scholar
  108. 108.
    W. Shockley, Solid St. Electronics 2, 35 (1961).ADSCrossRefGoogle Scholar
  109. 109.
    A. van der Ziel, J. Appl. Phys. 47, 2059 (1976).ADSCrossRefGoogle Scholar
  110. 110.
    M. S. Shur and L. F. Eastman, IEEE Trans. Electron Dev. ED-26, 1677 (1979).ADSCrossRefGoogle Scholar
  111. 111.
    L. F. Eastman, R. Stall, D. Woodard, N. Dandekar, C. E. C. Wood, M. S. Shur, and K. Board, Electron. Lett. 16, 524 (1980).CrossRefGoogle Scholar
  112. 112.
    T. J. Maloney, IEEE Electron Dev. Lett. EDL-1, 54 (1980).CrossRefGoogle Scholar
  113. 113.
    J. R. Barker, D. K. Ferry, and H. L. Grubin, IEEE Electron Dev. Lett. EDL-1, 209 (1980).CrossRefGoogle Scholar
  114. 114.
    H. U. Baranger and J. W. Wilkins, Phys. Rev. B 36, 1487 (1987).ADSCrossRefGoogle Scholar
  115. 115.
    P. Hesto, J-F. Pone, and R. Castagne, Appl. Phys. Lett. 40, 405 (1982).ADSCrossRefGoogle Scholar
  116. 116.
    A. J. F. Levi, J. R. Hayes, P. M. Platzman, and W. Wiegmann, Phys. Rev. Lett. 55, 2071 (1985).ADSCrossRefGoogle Scholar
  117. 117.
    M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985).ADSCrossRefGoogle Scholar
  118. 118.
    M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, Phys. Rev. B. 35, 4404 (1987).ADSCrossRefGoogle Scholar
  119. 119.
    M. Heiblum, in: High Speed Electronics (B. Kallback and H. Beneking, eds.), Springer-Verlag, Berlin (1986).Google Scholar
  120. 120.
    J. R. Hayes, A. J. F. Levi, A. C. Gossard, and J. H. English, in: High Speed Electronics (B. Kallback and H. Beneking, eds.), Springer-Verlag, Berlin (1986).Google Scholar
  121. 121.
    G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, and E. Ganin, IEEE Electron Dev. Lett. EDL-9, 464 (1988).ADSCrossRefGoogle Scholar
  122. 122.
    J. M. Ryan, J. Han, A. M. Kriman, and D. K. Ferry, Solid St. Electron. 32, 1609 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David K. Ferry
    • 1
  • Robert O. Grondin
    • 1
  1. 1.College of Engineering and Applied Science Center for Solid State Electronics ResearchArizona State UniversityTempeUSA

Personalised recommendations