Skip to main content

Transient Hot-Carrier Transport

  • Chapter
Physics of Submicron Devices

Part of the book series: Microdevices ((MDPF))

  • 157 Accesses

Abstract

When a system with many time constants is excited by a temporally varying forcing function, the system’s response can exhibit a variety of features such as overshoots, undershoots, and phase shifts. When the forcing function varies slowly on the scale of the time constants, it is common to use quasi-static analysis techniques in which the instantaneous time-varying response is modeled by using the steady-state response of the system to a constant forcing function equal in magnitude to the actual instantaneous forcing function. For the transport problems considered here, the system is an ensemble of carriers embedded in a set of energy bands and interacting with a phonon bath. The time constants include energy and momentum relaxation times or various scattering rates, the forcing function is the electric field, and the response of greatest interest is the ensemble average carrier velocity. The quasi-static analysis technique is the use of a steady-state drift-diffusion transport law. The response of the ensemble in situations where this steady-state or quasi-static analysis is inappropriate is called the transient dynamic response (TDR). Describing carrier transport in the TDR regime is the central topic of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e.g., the Special Issue on Hot Carrier Effects in Short-Channel Devices, IEEE Trans. Electron Dev. ED-28, August (1981).

    Google Scholar 

  2. See, e.g., H. Grubin, in: Physics of Submicron Devices (H. L. Grubin, D. K. Ferry, and C. Jacoboni, eds.), Plenum, New York (1988).

    Google Scholar 

  3. J. G. Ruch, IEEE Trans. Electron Dev. ED-19, 652 (1972).

    Article  Google Scholar 

  4. M. Brauer, Phys. Stat. Sol. (b) 81, 147 (1977).

    Article  ADS  Google Scholar 

  5. T. J. Maloney and J. Frey, J. Appl. Phys. 48, 781 (1977).

    Article  ADS  Google Scholar 

  6. S. Kratzner and J. Frey, J. Appl Phys. 49, 4064 (1978).

    Article  ADS  Google Scholar 

  7. G. Hill, P. N. Robson, A. Majerfeld, and W. Fawcett, Electron. Lett. 13, 235 (1977).

    Article  Google Scholar 

  8. D. K. Ferry and J. R. Barker, Phys. Stat. Sol. (b) 100, 683 (1980).

    Article  ADS  Google Scholar 

  9. K. Hess, in:Advances in Electronics and Electron Physics, Vol. 59, Academic Press, New York (1982).

    Google Scholar 

  10. C. Jacoboni, in: Physics of Submicron Devices (H. L. Grubin, D. K. Ferry, and C. Jacoboni, eds.), Plenum, New York (1988).

    Google Scholar 

  11. G. J. Iafrate and K. Hess, in: VLSI Electronics: Microstructure Science, Vol. 9 (N. G. Einspruch, ed.), Academic Press, Orlando (1985).

    Google Scholar 

  12. D. K. Ferry and R. O. Grondin, in: VLSI Electronics: Microstructure Science, Vol. 9 (N. G. Einspruch, ed), Academic Press, Orlando (1985).

    Google Scholar 

  13. T. H. Glisson, C. K. Williams, J. R. Hauser, and M. A. Littlejohn, in: VLSI Electronics: Microstructure Science, Vol. 4 (N. G. Einspruch, ed.), Academic Press, Orlando (1985).

    Google Scholar 

  14. W. Fawcett, A. D. Boardman, and S. Swain, J. Phys. Chem. Sol. 31, 1963 (1970).

    Article  ADS  Google Scholar 

  15. J. Zimmermann, P. Lugli, and D. K. Ferry, Solid-State Electron. 26, 233 (1983).

    Article  ADS  Google Scholar 

  16. P. Lugli, J. Zimmermann, and D. K. Ferry, J. Phys. 42 (Suppl. 10), C7–103 (1981).

    Google Scholar 

  17. R. O. Grondin and M. J. Kann, Solid-State Electron. 31, 567 (1988).

    Article  ADS  Google Scholar 

  18. See, e.g., R. W. Zwanzig, in: Lectures in Theoretical Physics (W. E. Brittin, B. W. Downs, and J. Downs, eds.), Interscience, New York (1961).

    Google Scholar 

  19. Remember that the general N-body problem in phase space can be described by a hierarchy of coupled equations for the 1 through N particle distribution functions. To decouple the hierarchy, some additional approximation, such as molecular chaos, must be assumed. See N. N. Bogoliubov, Lectures on Quantum Statistics, Gordon and Breach, New York (1967).

    Google Scholar 

  20. R. Kubo, in: Lecture Note in Physics,Vol. 31,Transport Phenomena (J. Ehlers et aL, ed.), Springer-Verlag, Berlin (1974); I. Prigogine and P. Resibois, Physica 27, 629 (1961); H. J. Kreuzer, Nonequilibrium Thermodynamics and Its Statistical Foundations, Oxford University Press, London (1981). In each of these, however, (5.16) is reduced to a kernel of a relaxation integral whose form must relate to (5.17) due to the need to reduce to a master equation. Barker(21) shows the exact form.

    Google Scholar 

  21. J. R. Barker, J. Phys. C 6, 2663 (1973).

    ADS  Google Scholar 

  22. P. N. Argyres, Phys. Rev. 132, 1527 (1961).

    Article  ADS  Google Scholar 

  23. K. K. Thornber, Phys. Rev. B 3, 1929 (1971).

    Article  ADS  Google Scholar 

  24. D. K. Ferry, in: Physics of Nonlinear Transport in Semiconductors (D. K. Ferry, J. R. Barker, and C. Jacoboni, eds.), Plenum, New York (1980).

    Chapter  Google Scholar 

  25. D. K. Ferry and J. R. Barker, J. Phys. Chem. Sol. 41, 1083 (1980).

    Article  ADS  Google Scholar 

  26. P. Price, Solid-State Electron. 21, 9 (1978).

    Article  ADS  Google Scholar 

  27. D. K. Ferry, in: Handbook of Semiconductors, Vol. 1 (W. Paul, ed.), North-Holland, Amsterdam (1980).

    Google Scholar 

  28. J. R. Barker and D. K. Ferry, Phys. Rev. Lett. 42, 1779 (1979).

    Article  ADS  Google Scholar 

  29. H. F. Budd, Phys. Rev. 158, 798 (1967).

    Article  ADS  Google Scholar 

  30. J. Klafter and R. Silbey, Phys. Rev. Lett. 44, 55 (1980).

    Article  ADS  Google Scholar 

  31. V. M. Kenkre, E. W. Montroll, and M. F. Schlesinger, J. Stat. Phys. 9, 45 (1973).

    Article  ADS  Google Scholar 

  32. H. J. Kreuzer, Nonequilibrium Thermodynamics and Its Statistical Foundations, Oxford University Press, London (1981).

    Google Scholar 

  33. D. N. Zubarev, Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New York (1974).

    Google Scholar 

  34. R. W. Zwanzig, Phys. Rev. 124, 983 (1961); see also R. Zwanzig, K. S. J. Nordholm, and W. C. Mitchell, Phys. Rev. B 6, 1226 (1972).

    Google Scholar 

  35. J. R. Barker, in: Physics of Nonlinear Transport in Semiconductors (D. K. Ferry, J. R. Barker, and C. Jacoboni, eds.), Plenum, New York (1980).

    Google Scholar 

  36. P. J. Price, in: Fluctuation Phenomena in Solids (R. E. Burgess, ed.), p. 355, Academic Press, New York (1965).

    Google Scholar 

  37. P. Lugli and D. K. Ferry, IEEE Trans. Electron Dev. ED-32, 2431 (1985).

    Article  Google Scholar 

  38. O. Madelung, Introduction to Solid State Physics, Springer, Berlin (1978).

    Book  Google Scholar 

  39. S. Bosi and C. Jacoboni, J. Phys. C 9, 315 (1976).

    Article  ADS  Google Scholar 

  40. B. B. van Iperen and H. J. Tjassens, Proc. IEEE 59, 1032 (1971).

    Article  Google Scholar 

  41. K. S. Champlin and G. Eisenstein, IEEE Trans. Microwave Theory Tech. MIT-26, 31 (1978).

    Article  ADS  Google Scholar 

  42. R. O. Grondin, P. A. Blakey, and J. R. East, IEEE Trans. Electron Dev. ED-31, 21 (1984).

    Article  ADS  Google Scholar 

  43. A. M. Mazzone and H. D. Rees, IEE Proc. Pt. I 127, 149 (1980).

    Google Scholar 

  44. J. Zimmermann, Y. Leroy, and E. Constant, J. Appl. Phys. 49, 3378 (1978).

    Article  ADS  Google Scholar 

  45. P. A. Lebwohl, J Appl Phys. 44, 1744 (1973).

    Article  ADS  Google Scholar 

  46. H. D. Rees, IBM J. Res. Dev. 13, 537 (1969).

    Article  Google Scholar 

  47. H. D. Rees, J. Phys. Chem. Sol. 30, 643 (1969).

    Article  ADS  Google Scholar 

  48. W. Fawcett, in: Electrons in Crystalline Solids, International Atomic Energy Agency, Vienna (1973).

    Google Scholar 

  49. M. A. Osman and D. K. Ferry, J. Appl. Phys. 61, 5330 (1987).

    Article  ADS  Google Scholar 

  50. D. Jones and H. D. Rees, J. Phys. C. 6, 1781 (1973).

    Article  ADS  Google Scholar 

  51. D. Jones and H. D. Rees, Electron. Lett. 8, 363 (1972).

    Article  Google Scholar 

  52. R. B. Hammond, Physica B 134, 475 (1985).

    Article  Google Scholar 

  53. G. Mourou, K. Meyer, J. Whitaker, M. Pessot, R. Grondin and C. Caruso, in: Picosecond Electronics and Optoelectronics II, Springer Series in Electronics and Photonics, Vol. 24, p. 40, Springer-Verlag, New York (1987).

    Book  Google Scholar 

  54. M. C. Nuss, D. H. Auston, and F. Capasso, Phys. Rev. Lett. 58, 2355 (1987).

    Article  ADS  Google Scholar 

  55. C. V. Shank, R. L. Fork, B. I. Greene, F. K. Reinhart, and R. A. Logan, Appl. Phys. Lett. 38, 104 (1981).

    Article  ADS  Google Scholar 

  56. S. Ramo, Proc. IRE 27, 584 (1939).

    Article  Google Scholar 

  57. W. Shockley, J. Appl Phys. 9, 635 (1981).

    Article  ADS  Google Scholar 

  58. S. Teitel and J. W. Wilkins, J. Appl Phys. 53, 5006 (1982).

    Article  ADS  Google Scholar 

  59. S. J. Allen, C. L. Allyn, H. M. Cox, F. DeRosa, and G. E. Mahoney, Appl Phys. Lett. 42, 96 (1983).

    Article  ADS  Google Scholar 

  60. S. J. Allen, in: Physics of Submicron Devices (H. L. Grubin, D. K. Ferry, and C. Jacoboni, eds.), Plenum, New York (1988).

    Google Scholar 

  61. P. Das and D. K. Ferry, Solid-State Electron. 19, 851 (1976).

    Article  ADS  Google Scholar 

  62. G. H. Glover, J. Appl. Phys. 44, 1295 (1973).

    Article  ADS  Google Scholar 

  63. W. Franz, Z. Naturforsch 13, 484 (1958).

    ADS  MATH  Google Scholar 

  64. L. V. Keldysh, Soy. Phys. JETP 7,778 (1958).

    Google Scholar 

  65. M. Osman and H. Grubin, Solid-State Electron. 31, 471 (1988).

    Article  ADS  Google Scholar 

  66. W. Ritz and P. Kocevar, Phys. Rev. B 28, 7040 (1983).

    Article  ADS  Google Scholar 

  67. J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, Phys. Rev. Lett. 59, 2222 (1987).

    Article  ADS  Google Scholar 

  68. D. H. Auston, IEEE J. Quantum Electron. 19, 639 (1983).

    Article  ADS  Google Scholar 

  69. J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, IEEE J. Quantum Elect. QE-19, 664 (1983).

    Article  ADS  Google Scholar 

  70. K. E. Meyer, M. Pessot, G. Mourou, R. O. Grondin, and S. N. Chamoun, Appl. Phys. Lett. 53, 2254 (1988).

    Article  ADS  Google Scholar 

  71. K. Meyer and G. Mourou, in: Picosecond Electronics and Optoelectronics,Springer Series in Electrophysics, Vol. 21 (G. Mourou, D. Bloom, and C. Lee, eds.), Springer-Verlag, New York (1985).

    Google Scholar 

  72. J. A. Valdmanis, Subpicosecond Electro-Optic Sampling, Ph.D. Dissertation, University of Rochester (1983).

    Google Scholar 

  73. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53,1555 (1984).

    Article  ADS  Google Scholar 

  74. A. Evan Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).

    Article  ADS  Google Scholar 

  75. G. M. Wysin, D. L. Smith, and A. Redondo (unpublished).

    Google Scholar 

  76. R. Joshi, S. Chamoun, and R. O. Grondin, in: Picosecond Electronics and Optoelectronics IV (T.C. L. Gerhard Sollner and D. M. Bloom, eds.) (1989).

    Google Scholar 

  77. S. N. Chamoun, R. Joshi, E. N. Arnold, R. O. Grondin, K. E. Meyer, M. Pessot, and G. A. Mourou, J. Appl. Phys. 66, 236 (1989).

    Article  ADS  Google Scholar 

  78. E. O. Kane, J. Phys. Chem. Sol. 1, 249 (1957).

    Article  ADS  Google Scholar 

  79. M. A. Osman and D. K. Ferry, Phys. Rev B 36, 6018 (1987).

    Article  ADS  Google Scholar 

  80. M. Rieger, P. Kocevar, P. Bordone, P. Lugli, and L. Reggiani, Solid St. Electron. 31, 687 (1988).

    Article  ADS  Google Scholar 

  81. K. Brennan and K. Hess, Phys. Rev. B 29, 5581 (1984).

    Article  ADS  Google Scholar 

  82. A. J. Taylor, D. J. Erskine, and C. L. Tang, J. Opt. Am. B 2, 663 (1985).

    Article  ADS  Google Scholar 

  83. D. E. Aspnes, Phys. Rev. B 14, 5331 (1976).

    Article  ADS  Google Scholar 

  84. V. N. Freire, A. R. Vasconcellos, and R. Luzzi, Solid. St. Commun. 66, 683 (1988).

    Article  ADS  Google Scholar 

  85. E. N. Arnold, Time-Domain Analysis of Nonlinear Microwave Circuits Using a Frequency-Domain Description of the Linear Subnetworks, Masters Thesis, Arizona State University (1988).

    Google Scholar 

  86. J. F. Whitaker, R. Sobolewski, D. Dykaar, T. Hsiang, and G. Mourou, IEEE Trans. Microwave Theory Tech. 36 (1988).

    Google Scholar 

  87. S. Laval, C. Bru, C. Arnodo, and R. Castagne, in: IEEE Int. Electron Devices Meeting Tech. Digest, p. 626 (1980).

    Google Scholar 

  88. R. N. Zitter, Appl. Phys. Lett. 14, 73 (1969).

    Article  ADS  Google Scholar 

  89. C. J. Hearn, P. T. Landsberg, and A. R. Beattie, in: Proc. Sixth Int. Conf. Physics of Semiconductors,p. 857, Inst. Physics, London (1962).

    Google Scholar 

  90. D. K. Ferry, Phys. Rev. B 18, 7033 (1978).

    Article  ADS  Google Scholar 

  91. H. Brooks, in: Advance in Electronics and Electron Physics, Vol. 7, p. 85 (1955).

    Google Scholar 

  92. V. Heine and J. A. Van Vechten, Phys. Rev. B 13, 1622 (1976).

    Article  ADS  Google Scholar 

  93. M. Wautelet and J. A. Van Vechten, Phys. Rev. B 23, 5551 (1981).

    Article  ADS  Google Scholar 

  94. J. C. Inkson, J. Phys. C, 9, 117 (1976).

    Google Scholar 

  95. C. H. Lee, A. Antonetti, and G. Mourou, Opt. Commun. 21, 158 (1977).

    Article  ADS  Google Scholar 

  96. J. Degani, R. F. Leheny, R. Nahory, and J. P. Heritage, Appl. Phys. Lett. 39, 569 (1981).

    Article  ADS  Google Scholar 

  97. R. A. Hopfel, J. Shah, P. A. Wolf, and A. C. Gossard, Phys. Rev. Lett. 56, 2736 (1986).

    Article  ADS  Google Scholar 

  98. D. D. Tang, F. F. Fang, M. Scheuermann, and T. C. Chen, Appl. Phys. Lett. 49, 1540 (1986).

    Article  ADS  Google Scholar 

  99. M. A. Osman and H. L. Grubin, Proc. SPIE 942, 18 (1988).

    Article  Google Scholar 

  100. J. D. Wiley, in: Semiconductors and Semimetals (R. K. Willardson and A. C. Beer, eds.), Vol. 10, p. 91, Academic Press, New York (1975).

    Google Scholar 

  101. M. D’yakonov, V. I. Perel, and I. N. Yassievich, Son Phys. Semicond. 11, 801 (1977).

    Google Scholar 

  102. P. Lugli, C. Jacoboni, L. Reggiani, and P. Kocevar, Appl. Phys. Lett. 50, 1521 (1987).

    Article  Google Scholar 

  103. R. Joshi and R. O. Grondin, J. Appl. Phys. 66, 4288 (1989).

    Article  ADS  Google Scholar 

  104. J. R. Meyer and F. J. Bartoli, Phys. Rev. B 28, 915 (1983).

    Article  ADS  Google Scholar 

  105. R. K. Ridley, Superlattices and Microstructures 2, 159 (1986).

    Article  ADS  Google Scholar 

  106. M. E. Kim, A. Das, and S. D. Senturia, Phys. Rev. B 15, 6890 (1978).

    Article  ADS  Google Scholar 

  107. H. A. Bethe, MIT Radiation Lab Rep. 43–12 (1942).

    Google Scholar 

  108. W. Shockley, Solid St. Electronics 2, 35 (1961).

    Article  ADS  Google Scholar 

  109. A. van der Ziel, J. Appl. Phys. 47, 2059 (1976).

    Article  ADS  Google Scholar 

  110. M. S. Shur and L. F. Eastman, IEEE Trans. Electron Dev. ED-26, 1677 (1979).

    Article  ADS  Google Scholar 

  111. L. F. Eastman, R. Stall, D. Woodard, N. Dandekar, C. E. C. Wood, M. S. Shur, and K. Board, Electron. Lett. 16, 524 (1980).

    Article  Google Scholar 

  112. T. J. Maloney, IEEE Electron Dev. Lett. EDL-1, 54 (1980).

    Article  Google Scholar 

  113. J. R. Barker, D. K. Ferry, and H. L. Grubin, IEEE Electron Dev. Lett. EDL-1, 209 (1980).

    Article  Google Scholar 

  114. H. U. Baranger and J. W. Wilkins, Phys. Rev. B 36, 1487 (1987).

    Article  ADS  Google Scholar 

  115. P. Hesto, J-F. Pone, and R. Castagne, Appl. Phys. Lett. 40, 405 (1982).

    Article  ADS  Google Scholar 

  116. A. J. F. Levi, J. R. Hayes, P. M. Platzman, and W. Wiegmann, Phys. Rev. Lett. 55, 2071 (1985).

    Article  ADS  Google Scholar 

  117. M. Heiblum, M. I. Nathan, D. C. Thomas, and C. M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985).

    Article  ADS  Google Scholar 

  118. M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, Phys. Rev. B. 35, 4404 (1987).

    Article  ADS  Google Scholar 

  119. M. Heiblum, in: High Speed Electronics (B. Kallback and H. Beneking, eds.), Springer-Verlag, Berlin (1986).

    Google Scholar 

  120. J. R. Hayes, A. J. F. Levi, A. C. Gossard, and J. H. English, in: High Speed Electronics (B. Kallback and H. Beneking, eds.), Springer-Verlag, Berlin (1986).

    Google Scholar 

  121. G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, and E. Ganin, IEEE Electron Dev. Lett. EDL-9, 464 (1988).

    Article  ADS  Google Scholar 

  122. J. M. Ryan, J. Han, A. M. Kriman, and D. K. Ferry, Solid St. Electron. 32, 1609 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferry, D.K., Grondin, R.O. (1991). Transient Hot-Carrier Transport. In: Physics of Submicron Devices. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3284-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3284-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6444-3

  • Online ISBN: 978-1-4615-3284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics