Semiclassical Carrier Transport Models

  • David K. Ferry
  • Robert O. Grondin
Part of the Microdevices book series (MDPF)


In this chapter we begin our study of charge and carrier transport through small semiconductor devices. We are confronted with a rich variety of possible transport models. Each of these models makes a different set of simplifying approximations concerning the physics of carrier transport and therefore has its own domain of validity. The overall problem which these various models solve in various ways is the response of a cloud or ensemble of mobile charges, embedded in a media which subjects them to a statistically varied set of scattering events and to a set of externally applied fields. The detail needed in the statistical description of the carrier distribution in phase space generally guides the choice of a transport model. At one extreme, we try to preserve all of the statistical information and solve for a distribution function or use Monte Carlo methods. At the other extreme, we decide that only the mean values are needed and generally solve for the carrier density. (Of particular interest here are a set of models in which hot-carrier phenomena are ignored while nonequilibrium densities are retained.) Lying between these two extremes are a variety of models in which one retains hot-carrier physics in the formulation of carrier current densities as well as nonequilibrium concentrations. If we are interested in noise calculations, we must retain some information concerning statistical fluctuations about the mean value for one or more parameters, and questions then arise as to how one separates the mean motion from the overall motion and how one preserves or represents the fluctuations.


Boltzmann Equation Carrier Density Carrier Transport Einstein Relation Boltzmann Transport Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, Investigations on the Theory of the Brownian Movement, Dover, New York (1956). This reprints Einstein’s papers from Ann. Phys. of 1905 and 1906.Google Scholar
  2. 2.
    S. M. Sze, Physics of Semiconductor Devices,2nd ed., Wiley, New York (1981).Google Scholar
  3. 3.
    P. T. Landsberg, in:Handbook on Semiconductors (William Paul, ed.), North-Holland, Amsterdam (1982).Google Scholar
  4. 4.
    C. Kittel and H. Kroemer, Thermal Physics, 2nd ed., W. H. Freeman, San Francisco (1980).Google Scholar
  5. 5.
    J. P. Nougier, in:Physics of Nonlinear Transport in Semiconductors (D. K. Ferry, J. R. Barker, and C. Jacoboni, eds.), Springer Science+Business Media New York (1980).Google Scholar
  6. 6.
    O. E. Lanford III, in: Nonequilibrium Phenomena. I: The Boltzmann Equation (J. L. Lebowitz and E. W. Montroll, eds.), North-Holland, Amsterdam (1983).Google Scholar
  7. 7.
    P. N. Butcher, in: Electrons in Crystalline Solids,International Atomic Energy Agency, Vienna (1973).Google Scholar
  8. 8.
    E. Conwell, in: Handbook on Semiconductors (William Paul, ed.), North-Holland, Amsterdam (1982).Google Scholar
  9. 9.
    R. Stratton, IEEE Trans. Electron Dev. ED-19, 1288 (1972).CrossRefGoogle Scholar
  10. 10.
    R. K. Mains, G. I. Haddad, and P. A. Blakey, IEEE Trans. Electron Dev. ED-30, 1327 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    D. L. Woolard, R. J. Trew, and M. A. Littlejohn, Fifth Int. Conf on Hot Carriers in Semiconductors,Boston, MA (1987).Google Scholar
  12. 12.
    D. Jones and H. D. Rees,.J. Phys. C 6 1781 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    R. K. Mains, M. A. El-Gabaly, G. I. Haddad, and J. P. Sun IEEE Trans. Electron Dev. ED-31 1273 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    J. G. Ruch,IEEE Trans. Electron Dev. ED-19 652 (1972).CrossRefGoogle Scholar
  15. 15.
    M. S. Shur,Electron. Lett. 12 615 (1976).CrossRefGoogle Scholar
  16. 16.
    H. J. Kafka and K. Hess,IEEE Trans. Electron Dev. ED-28, 831 (1981).CrossRefGoogle Scholar
  17. 17.
    R. K. Froelich, Computer Modeling of Millimeter-Wave IMPATT Diodes,Ph.D. thesis, University of Michigan (1982).Google Scholar
  18. 18.
    H. D. Rees, J. Phys. Chem. Solids 30, 643 (1969).ADSCrossRefGoogle Scholar
  19. 19.
    S. J. Yakowitz, Computational Probability and Simulation, Addison-Wesley, Reading, MA (1977).Google Scholar
  20. 20.
    S. Karlin and H. M. Taylor, A First Course in Stochastic Processes,2nden Academic Press, New York (1975).zbMATHGoogle Scholar
  21. 21.
    W. Fawcett, in: Electrons in Crystalline Solids, International Atomic Energy Agency, Vienna (1973).Google Scholar
  22. 22.
    D. L. Emak and J. A. McCammon, J. Chem. Phys. 69 1352 (1978).ADSCrossRefGoogle Scholar
  23. 23.
    W. F. van Gunsteren and H. J. C. Berendsen, MoL Phys. 45 637 (1982).ADSCrossRefGoogle Scholar
  24. 24.
    D. Lippens and E. Constant, J. Phys. Coll. 42(C7), 207 (1981).Google Scholar
  25. 25.
    D. Lippens, J.-L. Nieruchalski, and E. ConstantIEEE Trans. Electron Dev. ED-32 2269 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    J. Zimmermann, P. Lugli, and D. K. Ferry, J. Phys. Coll. 42(C7), 95 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David K. Ferry
    • 1
  • Robert O. Grondin
    • 1
  1. 1.College of Engineering and Applied Science Center for Solid State Electronics ResearchArizona State UniversityTempeUSA

Personalised recommendations