Skip to main content

Heterojunctions and Interfaces

  • Chapter
  • 160 Accesses

Part of the book series: Microdevices ((MDPF))

Abstract

The presence of an inversion or accumulation layer of charge, either electrons or holes, at the surface of certain heterojunctions was predicted many decades ago. This is true whether the heterojunction is between two semiconductors, such as in the high-electron-mobility transistor, or between a semiconductor and an oxide (or free space), such as in an MOS device. Of course, this latter method of controlling surface (or interface) charge is the preferred approach to current very large scale integration (VLSI) in silicon, where the control over the charge is exercised by the gate MOS structure in the MOSFET. In contrast to this, early transistors in GaAs were prepared using the metal-gate technology for MESFETs, primarily because of the lack of a good oxide technology in GaAs. The approach to GaAs changed in 1978, when Dingle et al. (1) demonstrated that very high mobilities could be achieved in modulation-doped structures through growth by molecular-beam epitaxy (MBE).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, AppL Phys. Lett. 33, 665 (1978).

    Article  ADS  Google Scholar 

  2. T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, J. AppL Phys. 19, 1225 (1980).

    Google Scholar 

  3. D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart, and N. T. Linh, Electron. Lett. 16, 667 (1980).

    Article  ADS  Google Scholar 

  4. T. Ando, F. Stern, and A. B. Fowler, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  5. J. Blakemore, Semiconductor Statistics, Pergamon Press, New York (1962).

    MATH  Google Scholar 

  6. F. Herman and I. P. Batra, in: Physics of Si0 2 and Its Interfaces (S. T. Pantelides, ed.), p.333, Pergamon Press, New York (1978).

    Google Scholar 

  7. T. Kunjunny and D. K. Ferry, Phys. Rev. B 24, 4593 (1981).

    Article  ADS  Google Scholar 

  8. C. R. Helms, Y. E. Strausser, and W. E. Spicer, AppL Phys. Lett. 33, 767 (1978).

    Article  ADS  Google Scholar 

  9. J. Wager and C. W. Wilmsen, J. AppL Phys. 50, 874 (1979).

    Article  ADS  Google Scholar 

  10. S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, Phys. Rev. B 32, 8171 (1985).

    Article  ADS  Google Scholar 

  11. S. M. Goodnick and D. K. Ferry,in: Physics and Chemistry of III-V Compound Semiconductor Interfaces (C. W. Wilmsen, ed.), p.283, Springer Science+Business Media New York (1985).

    Chapter  Google Scholar 

  12. F. F. Fang and W. E. Howard, Phys. Rev. Lett. 16, 797 (1966).

    Article  ADS  Google Scholar 

  13. G. E. Marques and L. J. Sham, Surf. Sci. 113, 131 (1982).

    Article  ADS  Google Scholar 

  14. F. Stern and W. E. Howard, Phys. Rev. 163, 816 (1967).

    Article  ADS  Google Scholar 

  15. S. C. Sun and J. D. Plummer, IEEE Trans. Electron Dev. ED-27, 1497 (1980).

    Article  Google Scholar 

  16. A. G. Sabnis and J. T. Clemens, in: Proc. 1979 Int. Electron Devices Mtg., p. 18, IEEE Press, New York (1979).

    Book  Google Scholar 

  17. D. K. Ferry, in: Proc. 1984 Int. Electron Devices Mtg.,p. 605, IEEE Press, New York (1984).

    Book  Google Scholar 

  18. W. Fichtner, R. K. Watts, D.B. Fraser, R. L. Johnston, and S. M. SzeIEEE Electron Dev. Lett. EDL-3, 412 (1982).

    Article  ADS  Google Scholar 

  19. S. Y. Chou, D. A. Antoniadis, and H. I. Smith, in: Proc. 1985 Int. Electron Devices Mtg., p. 562, IEEE Press, New York (1985).

    Book  Google Scholar 

  20. D. K. Ferry, Phys. Rev. B 14, 1605 (1976).

    Article  ADS  Google Scholar 

  21. J. A. Cooper, Jr.andD. F. Nelson, IEEE Trans. Electron Dev. ED-27, 2179 (1980).

    Article  Google Scholar 

  22. U. Ravaioli and D. K. Ferry, IEEE Trans. Electron Dev. ED-33, 677 (1986).

    Article  ADS  Google Scholar 

  23. K. Hess, private communication.

    Google Scholar 

  24. H. Kroemer, unpublished notes.

    Google Scholar 

  25. L. A. Akers, M. A. Holly, and C. Lund, in: Proc. 1985 Int. Electron Devices Mtg., p. 80, IEEE Press, New York (1984) and subsequent private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ferry, D.K., Grondin, R.O. (1991). Heterojunctions and Interfaces. In: Physics of Submicron Devices. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3284-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3284-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6444-3

  • Online ISBN: 978-1-4615-3284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics