Heterojunctions and Interfaces

  • David K. Ferry
  • Robert O. Grondin
Part of the Microdevices book series (MDPF)


The presence of an inversion or accumulation layer of charge, either electrons or holes, at the surface of certain heterojunctions was predicted many decades ago. This is true whether the heterojunction is between two semiconductors, such as in the high-electron-mobility transistor, or between a semiconductor and an oxide (or free space), such as in an MOS device. Of course, this latter method of controlling surface (or interface) charge is the preferred approach to current very large scale integration (VLSI) in silicon, where the control over the charge is exercised by the gate MOS structure in the MOSFET. In contrast to this, early transistors in GaAs were prepared using the metal-gate technology for MESFETs, primarily because of the lack of a good oxide technology in GaAs. The approach to GaAs changed in 1978, when Dingle et al. (1) demonstrated that very high mobilities could be achieved in modulation-doped structures through growth by molecular-beam epitaxy (MBE).


Gate Voltage Depletion Region Inversion Layer Coulomb Scattering Inversion Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Dingle, H. L. Stormer, A. C. Gossard, and W. Wiegmann, AppL Phys. Lett. 33, 665 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, J. AppL Phys. 19, 1225 (1980).Google Scholar
  3. 3.
    D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart, and N. T. Linh, Electron. Lett. 16, 667 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    T. Ando, F. Stern, and A. B. Fowler, Rev. Mod. Phys. 54, 437 (1982).ADSCrossRefGoogle Scholar
  5. 5.
    J. Blakemore, Semiconductor Statistics, Pergamon Press, New York (1962).zbMATHGoogle Scholar
  6. 6.
    F. Herman and I. P. Batra, in: Physics of Si0 2 and Its Interfaces (S. T. Pantelides, ed.), p.333, Pergamon Press, New York (1978).Google Scholar
  7. 7.
    T. Kunjunny and D. K. Ferry, Phys. Rev. B 24, 4593 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    C. R. Helms, Y. E. Strausser, and W. E. Spicer, AppL Phys. Lett. 33, 767 (1978).ADSCrossRefGoogle Scholar
  9. 9.
    J. Wager and C. W. Wilmsen, J. AppL Phys. 50, 874 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, Phys. Rev. B 32, 8171 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    S. M. Goodnick and D. K. Ferry,in: Physics and Chemistry of III-V Compound Semiconductor Interfaces (C. W. Wilmsen, ed.), p.283, Springer Science+Business Media New York (1985).CrossRefGoogle Scholar
  12. 12.
    F. F. Fang and W. E. Howard, Phys. Rev. Lett. 16, 797 (1966).ADSCrossRefGoogle Scholar
  13. 13.
    G. E. Marques and L. J. Sham, Surf. Sci. 113, 131 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    F. Stern and W. E. Howard, Phys. Rev. 163, 816 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    S. C. Sun and J. D. Plummer, IEEE Trans. Electron Dev. ED-27, 1497 (1980).CrossRefGoogle Scholar
  16. 16.
    A. G. Sabnis and J. T. Clemens, in: Proc. 1979 Int. Electron Devices Mtg., p. 18, IEEE Press, New York (1979).CrossRefGoogle Scholar
  17. 17.
    D. K. Ferry, in: Proc. 1984 Int. Electron Devices Mtg.,p. 605, IEEE Press, New York (1984).CrossRefGoogle Scholar
  18. 18.
    W. Fichtner, R. K. Watts, D.B. Fraser, R. L. Johnston, and S. M. SzeIEEE Electron Dev. Lett. EDL-3, 412 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    S. Y. Chou, D. A. Antoniadis, and H. I. Smith, in: Proc. 1985 Int. Electron Devices Mtg., p. 562, IEEE Press, New York (1985).CrossRefGoogle Scholar
  20. 20.
    D. K. Ferry, Phys. Rev. B 14, 1605 (1976).ADSCrossRefGoogle Scholar
  21. 21.
    J. A. Cooper, Jr.andD. F. Nelson, IEEE Trans. Electron Dev. ED-27, 2179 (1980).CrossRefGoogle Scholar
  22. 22.
    U. Ravaioli and D. K. Ferry, IEEE Trans. Electron Dev. ED-33, 677 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    K. Hess, private communication.Google Scholar
  24. 24.
    H. Kroemer, unpublished notes.Google Scholar
  25. 25.
    L. A. Akers, M. A. Holly, and C. Lund, in: Proc. 1985 Int. Electron Devices Mtg., p. 80, IEEE Press, New York (1984) and subsequent private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David K. Ferry
    • 1
  • Robert O. Grondin
    • 1
  1. 1.College of Engineering and Applied Science Center for Solid State Electronics ResearchArizona State UniversityTempeUSA

Personalised recommendations