Fabrication Techniques for Submicron Devices

  • David K. Ferry
  • Robert O. Grondin
Part of the Microdevices book series (MDPF)


It is now possible to fabricate test patterns, which compose the basic parts of elemental semiconductor devices, that are as small as 10 nm in size, and to see individual features on the order of 1 nm in size.(1) This suggests that further device miniaturization and entirely new device concepts are certain to occur. However, coupled with the decrease in device size has been a concomitant increase in the number of devices that are contained on a single integrated circuit. Today’s 0.5-ikm devices allow as many as 16 million transistors on a single dynamic memory chip or as many as a million devices on a microprocessor chip. Therefore, while it is feasible to use exotic processing techniques to fabricate single devices, the industry requires processing techniques which can fabricate large arrays of chips, with each chip containing this large number of individual devices. Thus, the practicality of a particular process is of utmost importance if it is to be used in the continuing growth of integrated circuit density.


Schottky Barrier Etch Rate Modulation Transfer Function Fabrication Technique Effective Barrier Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Howard and D. E. Prober, in: VLSI Electronics: Microstructure Science (N. Einspruch, ed.), Vol. 4, pp. 145–189, Academic Press, New York (1982).Google Scholar
  2. 2.
    G. Bernstein and D. K. Ferry, Superlatt. and Microstructures 2, 373 (1986); J. Han, D. K. Ferry, and P. Newman, IEEE Electron Dev. Lett. 11, 209 (1990); A. Ishibashi, K. Funato, and Y. Mori, Jpn. J. Appl Phys. 27, L2382 (1988).Google Scholar
  3. 3.
    G. A. Sai-Halasz, M. R. Wordeman, D. P. Kern, S. Rishton, and E. Ganin, IEEE Electron Dev. Lett. EDL-9, 464 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    A. N. Broers, IEEE Trans. Electron Dev. ED-28, 1268 (1981).CrossRefGoogle Scholar
  5. 5.
    G. N. Taylor, Solid St. Technol, June 1984, pp. 105ff.Google Scholar
  6. 6.
    D. K. Ferry, G. Bernstein, and W.-P. Liu, in: Physics and Technology of Submicron Structures (H. Heinrich, G. Bauer, and F. Kuchar, eds.), pp. 37–44, Springer-Verlag, Berlin (1988).CrossRefGoogle Scholar
  7. 7.
    A. N. Broers, J. Electrochem. Soc. 128, 166 (1977).CrossRefGoogle Scholar
  8. 8.
    T. N. Hall, A. Wagner, and L. F. Thompson, J. Vac. Sci. Technol. 16, 1189 (1979).CrossRefGoogle Scholar
  9. 9.
    E. Spiller and R. Feder, Top. Appl Phys. 22, 35 (1977).CrossRefGoogle Scholar
  10. 10.
    A. N. Broers, J. M. E. Harper, and W. W. Molzen, Appl Phys. Lett. 33, 392 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    E. Bassous, L. M. Eprath, G. Pepper, and D. J. Mikalsen, J. Electrochem. Soc. 130, 478 (1983).CrossRefGoogle Scholar
  12. 12.
    G. B. Bernstein, W.-P. Liu, Y. N. Khawaja, M. N. Kozicki, D. K. Ferry, and L. Blum, J. Vac. Set Technol. B 6, 2298 (1988).CrossRefGoogle Scholar
  13. 13.
    H. G. Craighead, J. C. White, R. E. Howard, L. D. Jackel, R. E. Behringer, J. E. Sweeney, and R. W. Epworth, J. Vac. Sci. Technol B 1, 1186 (1983).CrossRefGoogle Scholar
  14. 14.
    W. D. Grobman, J. Vac. Set Technol. B 1, 1257 (1983).CrossRefGoogle Scholar
  15. 15.
    R. P. Haelbich, J. P. Silverman, W. D. Grobman, J. R. Maldonado, and J. M. Warlaumont, J. Vac. Set Technol. B 1, 1262 (1983).CrossRefGoogle Scholar
  16. 16.
    G. N. Taylor, Solid St. Technol,June 1984, p. 124.Google Scholar
  17. 17.
    E. Tobias and A. Carroll, J. Vac. Sci. Technol. 21, 999 (1982).ADSCrossRefGoogle Scholar
  18. 18.
    H. Sewell, J. Vac. Sci. Technol 15, 927 (1978).ADSCrossRefGoogle Scholar
  19. 19.
    H. Hiraoka, J. Electrochem. Soc. 128, 1065 (1981).CrossRefGoogle Scholar
  20. 20.
    E. D. Roberts, Solid St. Technol,June 1984, p. 135.Google Scholar
  21. 21.
    H. C. Pfeiffer, IEEE Trans. Electron Dev. ED-26, 663 (1979).CrossRefGoogle Scholar
  22. 22.
    M. Idesawa, T. Soma, E. Goto, and T. Sasaki, J. Vac. Sci. Technol 19, 953 (1981).CrossRefGoogle Scholar
  23. 23.
    G. Stengl, R. Kaitna, H. Loschner, R. Rieder, P. Wolf, and R. Sacher, J. Vac. Sci. Technol 19, 1164 (1981).ADSCrossRefGoogle Scholar
  24. 24.
    G. Stengl, H. Loschner, and E. Hammel, in: Physics and Technology of Submicron Structures (H. Heinrich, G. Bauer, and F. Kuchar, eds.), pp. 56–61, Springer-Verlag, Berlin (1988).CrossRefGoogle Scholar
  25. 25.
    E. Hu, in: GaAs Technology II (D. K. Ferry, ed.), H. W. Sams, Indianapolis, IN (1989).Google Scholar
  26. 26.
    W. R. Grove, Phil. Trans. Roy. Soc. London 142, 87 (1852).CrossRefGoogle Scholar
  27. 27.
    R. Castaing and P. Laborie, Compt. Rend. Acad. Sci. 238, 1885 (1952).Google Scholar
  28. 28.
    J. L. Mauer, J. S. Logan, L. B. Zielinski, and G. S. Schwartz, J. Vac. Sci. Technol 15, 1734 (1978).ADSCrossRefGoogle Scholar
  29. 29.
    G. C. Schwartz and P. M. Schaible, J. Vac. Sci. Technol. 16, 410 (1979).ADSCrossRefGoogle Scholar
  30. 30.
    P. M. Schaible, W. C. Metzger, and J. P. Anderson, J. Vac. Sci. Technol 15, 334 (1978).ADSCrossRefGoogle Scholar
  31. 31.
    R. E. Klinger and J. E. Greene, J. Appl Phys. 54, 1595 (1983).ADSCrossRefGoogle Scholar
  32. 32.
    E. L. Hu and R. E. Howard, Appl Phys. Lett. 37, 1022 (1980).ADSCrossRefGoogle Scholar
  33. 33.
    J. Vatus, J. Chevrier, P. Deslescluse, and J. F. Rochette, IEEE Trans. Electron Dev. ED-33, 934 (1986).ADSCrossRefGoogle Scholar
  34. 34.
    K. Asakawa and S. Sugata, Jpn. J. Appl Phys. 22, L653 (1983).ADSCrossRefGoogle Scholar
  35. 35.
    M. W. Geis, G. A. Lincoln, N. Efremov, and W. J. Piacenti, J. Vac. Sci. Technol 19, 1390 (1981).ADSCrossRefGoogle Scholar
  36. 36.
    J. D. Chinn, A. Fernandez, I. Adesida, and E. D. Wolf, J. Vac. Sci. Technol A 1, 701 (1983).ADSCrossRefGoogle Scholar
  37. 37.
    Y. Ochiai, K. Gamo, and S. Namba, Jpn. J. Appl Phys. 23, L400 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    V. M. Donnelly, D. L. Flamm, and G. L. Collins, J. Vac. Sci. Technol 21, 817 (1982).ADSCrossRefGoogle Scholar
  39. 39.
    Y. Y. Tu, T. J. Chuang, and H. F. Winters, Phys. Rev. B 23, 823 (1981).ADSCrossRefGoogle Scholar
  40. 40.
    U. Gerlach-Meyer, J. W. Coburn, and E. Kay, Surf. Sci. 103, 177 (1981).ADSCrossRefGoogle Scholar
  41. 41.
    V. M. Donnelly and D. L. Flamm, Solid St. Technol 24(4), 161 (1981).Google Scholar
  42. 42.
    H. F. Winters, J. Appl Phys. 49, 5165 (1978).ADSCrossRefGoogle Scholar
  43. 43.
    L. Hollan, in: GaAs and Related Compounds (1974), Inst. Phys. Conf Series, Vol. 24, p. 22 (1975).ADSGoogle Scholar
  44. 44.
    H. B. Pogge and B. M. Kernlage, J. Cryst. Growth 31, 183 (1975), and references therein.ADSCrossRefGoogle Scholar
  45. 45.
    J. V. DiLorenzo and G. E. Moore, Jr., J. Electrochem. Soc. 118, 1823 (1971).CrossRefGoogle Scholar
  46. 46.
    D. J. Ashen, P. J. Dean, D. T. J. Hurle, J. B. Mullin, A. Royle, and A. M. White, in GaAs and Related Compounds (1974), Inst. Phys. Conf. Series, Vol. 24, p. 229 (1975).Google Scholar
  47. 47.
    H. M. Cox, J. Cryst. Growth 69, 641 (1984).ADSCrossRefGoogle Scholar
  48. 48.
    J. J. Coleman, in GaAs Technology (D. K. Ferry, ed.), pp. 79–105, H. W. Sams, Indianapolis, IN (1985).Google Scholar
  49. 49.
    J. P. Duchemin, M. Bonnet, G. Beuchet, and F. Koelsch, in GaAs and Related Compounds, Inst. Phys. Conf. Series, Vol. 45, p. 10 (1978).Google Scholar
  50. 50.
    S. J. Jeng, C. M. Wayman, G. Costrini, and J. J. Coleman, Mater. Lett. 2, 359 (1984).CrossRefGoogle Scholar
  51. 51.
    J. R. Arthur, J. Appl Phys. 39, 4032 (1968).ADSCrossRefGoogle Scholar
  52. 52.
    A. C. Gossard, P. M. Petroff, W. Wiegmann, R. Dingle, and A. Savage, Appl Phys. Lett. 29, 323 (1976).ADSCrossRefGoogle Scholar
  53. 53.
    R. Dingle, A. C. Gossard, and W. Wiegmann, Phys. Rev. Lett. 34, 1327 (1975).ADSCrossRefGoogle Scholar
  54. 54.
    M. B. Panish and S. Sumski, J. Appl Phys. 55, 3571 (1984).ADSCrossRefGoogle Scholar
  55. 55.
    W. T. Tsang, Appl Phys. Lett. 45, 1234 (1984).ADSCrossRefGoogle Scholar
  56. 56.
    J. Ryan, Thesis, Arizona State University, unpublished.Google Scholar
  57. 57.
    F. Braun, Ann. Phys. Chem. 153, 556 (1874).Google Scholar
  58. 58.
    W. Schottky, Naturwiss. 26, 843 (1938).ADSCrossRefGoogle Scholar
  59. 59.
    J. Bardeen, Phys. Rev. 71, 717 (1947).ADSCrossRefGoogle Scholar
  60. 60.
    S. Kurtin, T. C. McGill, and C. A. Mead, Phys. Rev. Lett. 22, 1433 (1969).ADSCrossRefGoogle Scholar
  61. 61.
    M. Schluter, J. Vac. Sci. Technol. 15, 1374 (1978).ADSCrossRefGoogle Scholar
  62. 62.
    P. Skeath, I. Lindau, P. W. Chye, C. Y. Su, and W. E. Spicer, I Vac. Sci. Technol. 16, 1143 (1979), and references therein.ADSCrossRefGoogle Scholar
  63. 63.
    L. J. Brillson, Phys. Rev. Lett. 38, 245 (1978); J. Vac. Sci. Technol. 16, 1137 (1979).Google Scholar
  64. 64.
    W. Mönch, in GaAs Technology II (D. K. Ferry, ed.), pp. 139–178, H. W. Sams, Indianapolis, IN (1990).Google Scholar
  65. 65.
    B. E. Deal, E. H. Snow, and C. A. Mead, J. Phys. Chem. Solids 27, 1873 (1966).ADSCrossRefGoogle Scholar
  66. 66.
    Z. A. Weinberg and A. Hartstein, Solid St. Commun. 20, 179 (1976).ADSCrossRefGoogle Scholar
  67. 67.
    A. Hartstein and Z. A. Weinberg, J. Phys. C 11, L469 (1978); Phys. Rev. B 20, 1335 (1980); A. Hartstein, Z. A. Weinberg and D. J. DiMaria, Phys. Rev. B 25, 7194 (1982).Google Scholar
  68. 68.
    S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York (1981).Google Scholar
  69. 69.
    T. S. Kuan, P. E. Batson, T. N. Jackson, H. Rupprecht, and E. L. Wilkie, J. Appl Phys. 54, 6952 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David K. Ferry
    • 1
  • Robert O. Grondin
    • 1
  1. 1.College of Engineering and Applied Science Center for Solid State Electronics ResearchArizona State UniversityTempeUSA

Personalised recommendations