Noise in Submicron Devices

  • David K. Ferry
  • Robert O. Grondin
Part of the Microdevices book series (MDPF)


The essential problem in noise theory is relating local, microscopically produced fluctuations at an interior point to the observable, fluctuations in the macroscopic terminal currents and voltages. A variety of schemes for this have been developed, and a good review can be found in van Vliet et al. (1) The oldest scheme is the “salami” method, in which the device is subdivided into slices. Each slice possesses a local noise source, and a noise voltage appears across the slice as a result. The total mean square noise voltage is the sum of the mean square noise voltages of the individual slices. This summation process ignores correlations between slice noise voltages. In more sophisticated variants, a tensor Green’s function is defined, which relates fluctuations in field at point x to fluctuations in current or carrier density at point x’. The terminal noise voltage then is an integral over the product of the Green’s function and the noise source. The terminal mean square noise voltage is then the mean of the product of two such integrals. This mean involves a two-point spatial correlation function for the noise source. Although such spatial correlations of the microscopic fluctuations do exist, they are generally ignored.


Velocity Fluctuation Shot Noise Noise Correlation Spectral Density Function Noise Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. van Vliet, A. Friedman, R. J. J. Zijlstra, A. Gisolf, and A. van der Ziel, J. Appl. Phys. 46, 1804 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    A. van der Ziel and E. R. Chenette, Advances in Electronics and Electron Physics (L. Marton, ed.), vol. 46, pp. 313–383, Academic Press, New York (1978).Google Scholar
  3. 3.
    W. Shockley, J. A. Copeland, and R. P. James, in: Quantum Theory of Atoms, Molecules and the Solid State (P. O. Lowdin, ed.), Academic Press, New York (1966).Google Scholar
  4. 4.
    P. J. Price, J. Appl. Phys. 31, 949 1960.ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    J. P. Nougier, in: Physics of Nonlinear Transport in Semiconductors (D. K. Ferry, J. R. Barker, and C. Jacoboni, eds.), Plenum, New York (1980).Google Scholar
  6. 6.
    K. M. van Vliet and A. van der Ziel, Solid-State Electron. 20, 931 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    J. L. Moll, Physics of Semiconductors, McGraw-Hill, New York (1964).zbMATHGoogle Scholar
  8. 8.
    G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications,Holden-Day, San Francisco (1968).zbMATHGoogle Scholar
  9. 9.
    Programs for Digital Signal Processing (Digital Signal Processing Committee, ed.), IEEE, New York (1980).Google Scholar
  10. 10.
    G. Hill, P. N. Robson, and W. Fawcett, J. Appl. Phys. 50, 356 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    R. Fauquembergue, J. Zimmermann, A. Kaszynski, E. Constant, and G. Microondes, J. Appl. Phys. 52, 1065 (1980).ADSCrossRefGoogle Scholar
  12. 12.
    A. Kaszynski, Etude des phenomenes de transport dans les materiaux semiconducteurs par les methodes de Monte Carlo: Application a l’arseniure de gallium de type N, Theses Docteur Ing., L’Universite des Sciences et Techniques de Lille (1979).Google Scholar
  13. 13.
    R. O. Grondin, P. A. Blakey, J. R. East, and E. D. Rothman, IEEE Trans. Electron Dev. ED-28, 914 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    H. D. Rees, IEEE Solid St. Electron Dev. 1, 165 (1977).ADSGoogle Scholar
  15. 15.
    B. M. Oliver, Proc. IEEE 53, 436 (1965).CrossRefGoogle Scholar
  16. 16.
    Baechtold, W., IEEE Trans. Electron Dev. ED-19, 674 (1972).CrossRefGoogle Scholar
  17. 17.
    R. A. Pucel, H. A. Haus, and H. Statz, in: Advances in Electronics and Electron Physics (L. Marton, ed.), vol. 38, Academic Press, New York (1975).Google Scholar
  18. 18.
    J. Frey, IEEE Trans. Electron Dev. ED-23, 1298 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    J. Graffeuil, J-F. Sautereau, G. Blasquez, and P. Rossel, IEEE Trans. Electron Dev. ED-25, 596 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    J. M. Golio and R. J. Trew, IEEE Trans. Electron Dev. ED-27, 1256 (1980).ADSCrossRefGoogle Scholar
  21. 21.
    K. Takagi and A. van der Ziel, Solid-State Electron. 22, 285 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    S. Weinreb, IEEE Trans. Microwave Theory Tech. MTT-28, 1041 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    P. Lugli, R. O. Grondin, and D. K. Ferry, in: The Physics of Submicron Structures (H. L. Grubin, K. Hess, G. J. Iafrate, and D. K. Ferry, eds.), Springer Science+Business Media New York (1984).Google Scholar
  24. 24.
    J. P. Nougier, J. C. Vaissiere, and C. Gontand, Phys. Rev. Lett. 51, 513 (1983).ADSCrossRefGoogle Scholar
  25. 25.
    P. A. Lebwohl and P. J. Price, Appl. Phys. Lett. 19, 530 (1971).ADSCrossRefGoogle Scholar
  26. 26.
    D. K. Ferry and J. R. Barker, J. Appl. Phys. 52, 818 (1981).ADSCrossRefGoogle Scholar
  27. 27.
    P. Lugli, J. Zimmermann, and D. K. Ferry, J. Phys. 42 (Suppl. 10), C7–103 (1981).Google Scholar
  28. 28.
    P. J. Price, in: Fluctuation Phenomena in Solids (R. E. Burgess, ed.), p. 355, Academic Press, New York (1965).Google Scholar
  29. 29.
    V. L. Gurevich, Soy. Phys.-JETP 17, 1252 (1963).MathSciNetADSGoogle Scholar
  30. 30.
    V. P. Kalashnikov, Physica 48, 93 (1970).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    D. K. Ferry, J. Phys. 42 (Suppl. 10), C7–253 (1981).Google Scholar
  32. 32.
    K. K. Thornber, Solid-State Electron. 17, 95 (1973).ADSCrossRefGoogle Scholar
  33. 33.
    A. van der Ziel, Solid-State Electron. 9, 899 (1966).ADSCrossRefGoogle Scholar
  34. 34.
    J. Zimmermann, Y. Leroy, A. Kaszynski, and B. Carnez, Monte Carlo Calculation of Nonsteady State Hot Electron Noise in very short Channel n-Si and n-GaAs devices, in: Proc. 5th Int. Conf. Noise in Physical Systems (D. Wolf, ed.), Springer Series on Electrophysics, vol. 2, Springer, New York (1978).Google Scholar
  35. 35.
    J. Zimmermann and E. Constant, Application of Monte Carlo techniques to hot carrier diffusion noise calculation in unipolar semiconducting components, Solid-State Electron. 23, 915–925 (1980).ADSCrossRefGoogle Scholar
  36. 36.
    C. Jacoboni, Phys. Stat. Solids (b) 65, 61 (1974).ADSCrossRefGoogle Scholar
  37. 37.
    B. Carnez, A. Cappy, R. Fauquembergue, E. Constant, and G. Salmer, IEEE Trans. Electron Dev. ED-28, 784 (1981).CrossRefGoogle Scholar
  38. 38.
    M. Shur, Electron. Lett. 12, 615 (1976).CrossRefGoogle Scholar
  39. 39.
    D. L. Snyder, Random Point Processes, Wiley, New York (1975).zbMATHGoogle Scholar
  40. 40.
    P. J. McCleer, D. Snyder, R. O. Grondin, and G. I. Haddad, Solid-State Electron. 24, 37 (1981).ADSCrossRefGoogle Scholar
  41. 41.
    M. Gilden and M. E. Hines, IEEE Trans. Electron Dev. ED-13, 169 (1966).CrossRefGoogle Scholar
  42. 42.
    Atharosios Papoulis, Probability,Random Variables, and Stochastic Processes, McGraw-Hill, New York (1965).Google Scholar
  43. 43.
    M. J. O. Strutt, Proc. IRE 34, 942 (1946).CrossRefGoogle Scholar
  44. 44.
    A. van der Ziel and R. L. Watters, Proc. IRE 46, 1426 (1958).Google Scholar
  45. 45.
    C. S. Kim, IEEE Trans. Electron Dev. ED-8, 394, 1961.ADSGoogle Scholar
  46. 46.
    A. Uhlir, Jr., Bell System Tech. J. 37, 951 (1958).Google Scholar
  47. 47.
    C. Dragone, Bell System Tech. J. 47, 1883 (1968).Google Scholar
  48. 48.
    P. J. McCleer, Frequency Conversion in Punch-Through-Semi-conductor Devices, Technical Report No. 143, Electron Physics Laboratory, Doctoral Dissertation, Department of Electrical and Computer Engineering, The University of Michigan, Ann Arbor, August (1978).Google Scholar
  49. 49.
    Y. Taur, IEEE Trans. Electron Dev. ED-27, 1921 (1980).ADSCrossRefGoogle Scholar
  50. 50.
    D. N. Held and A. R. Kerr, IEEE Trans. Microwave Theory Techn. MIT-26, 49 (1978).ADSCrossRefGoogle Scholar
  51. 51.
    N. J. Keen, Electron. Lett. 13, 282 (1977).ADSCrossRefGoogle Scholar
  52. 52.
    A. R. Kerr, IEEE Trans. Microwave Theory Tech. MTT-27, 135 (1979).ADSCrossRefGoogle Scholar
  53. 53.
    A. Sjolund, Int. J. Elec. 34, 551 (1973).CrossRefGoogle Scholar
  54. 54.
    R. L. Kuvas, IEEE Trans. Electron Dev. ED-23, 395 (1976).ADSCrossRefGoogle Scholar
  55. 55.
    J. J. Goedbloed and M. T. Vlaardingerbroek, IEEE Trans. Microwave Theory Tech. MIT-25, 324 (1977).ADSCrossRefGoogle Scholar
  56. 56.
    H. D. Rees, J. Phys. Chem. Solids 30, 643 (1969).ADSCrossRefGoogle Scholar
  57. 57.
    A. van der Ziel and G. Bosman, Phys. Stat. Solids (a) 73, K87 (1982).ADSCrossRefGoogle Scholar
  58. 58.
    A. van der Ziel and G. Bosman, Phys. Stat. Solids (a) 73, K93 (1983).CrossRefGoogle Scholar
  59. 59.
    R. R. Schmidt, G. Bosman, C. M. van Vliet, L. F. Eastman, and M. Hollis, Solid-State Electron. 26, 437 (1983).ADSCrossRefGoogle Scholar
  60. 60.
    M. S. Shur and L. F. Eastman, Electron. Lett. 16, 522 (1980), L. F. Eastman, R. Stall, D. Woodward, N. Dandekar, C. E. C. Wood, M. S. Shur, and K. Board, Electron. Lett. 16, 524 (1980).Google Scholar
  61. 61.
    A. J. Holden and B. T. Debney, Electron. Lett. 18, 558 (1982).ADSCrossRefGoogle Scholar
  62. 62.
    J. R. Barker, D. K. Ferry, and H. L. Grubin, IEEE Electron Dev. Lett. EDL-1, 209 (1980).CrossRefGoogle Scholar
  63. 63.
    D. K. Ferry, J. Zimmermann, P. Lugli, and H. Grubin, IEEE Electron Dev. Lett. EDL-2, 228 (1981).CrossRefGoogle Scholar
  64. 64.
    R. O. Grondin, P. Lugli, and D. K. Ferry, IEEE Electron Dev. Lett. EDL-3, 373 (1982).ADSCrossRefGoogle Scholar
  65. 65.
    A. van der Ziel, Proc. IEEE 76, 233 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • David K. Ferry
    • 1
  • Robert O. Grondin
    • 1
  1. 1.College of Engineering and Applied Science Center for Solid State Electronics ResearchArizona State UniversityTempeUSA

Personalised recommendations