Skip to main content
  • 843 Accesses

Abstract

The phenomenon of atomic absorption has been known for a long time. As early as the first quarter of the nineteenth century, Wollaston and Fraunhofer observed lines in the spectrum of the Sun now known to be caused by the absorption of light by atomic vapour in the Sun’s atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 4

  • Abbey, S. (1983) Studies in standard samples of silicate rocks and minerals 1969–1982. Geol. Survey Canada Paper 83–15.

    Google Scholar 

  • Aldous, K.M., B.W. Bailey and J.M. Rankin (1972) Burning velocity of the premixed nitrous oxide-acetylene flame and its influence on burner design. Anal. Chem. 44 191–194.

    Article  Google Scholar 

  • Alkemade, C.J.T. and J.M.W. Milatz (1955) A double beam method of spectral selection with flames. Appl. Sci. Res. B4 289–299.

    Google Scholar 

  • Barnett, W.B. (1973) Electrodeless discharge lamps for atomic absorption. Atomic Absorption Newslett. 12 142–146.

    Google Scholar 

  • Barredo F.B. and L.P. Diez (1980) Routine accurate determination of silica in silicate materials by atomic absorption spectrophotometry and subsequent computation. Talanta 27 69–70.

    Article  Google Scholar 

  • Barredo, F.B., P.A. Vasallo and L.P. Diez (1978) Determination of low amounts of strontium in geological materials by flameless atomic absorption spectrophotometry. Chem. Geol. 23 171–178.

    Article  Google Scholar 

  • Bernas, B. (1968) A new method for decompositon and comprehensive analysis of silicates by atomic absorption spectrometry. Anal. Chem. 40 1682–1686.

    Article  Google Scholar 

  • Bettinelli, M. (1983) Determination of trace metals in siliceous standard reference materials by electrothermal atomic absorption spectrometry after lithium tetraborate fusion. Anal. Chim. Acta 148 193–201.

    Article  Google Scholar 

  • Billings, G.L. and J.A.S. Adams (1964) Analysis of geological material by atomic absorption. Atomic Absorption Newslett. 23 65–71.

    Google Scholar 

  • Boar, P.L. and L.K. Ingram (1970) The comprehensive analysis of coal ash and silicate rocks by atomic absorption spectrometry by a fusion technique. Analyst (London) 95 124–130.

    Article  Google Scholar 

  • Browner, R.F. and A.W. Boom (1984) Sample introduction tech-niques for atomic spectroscopy. Anal. Chem. 56 875A–888A.

    Google Scholar 

  • Buckley, D.E. and R.E. Cranston (1971) Atomic absorption analyses of 18 elements from a single decomposition of aluminosilicate. Chem. Geol. 7 273–284.

    Article  Google Scholar 

  • Capacho-Delgado, L. and S. Sprague (1965) Atomic Absorption Newslett. 4 363.

    Google Scholar 

  • Casteldine, C.G., J.C. Robbins and N.A. Skerten (1983) A practical field-portable atomic absorption analyser. International Labmate 8 (4).

    Google Scholar 

  • Chakrabarti, C.L., S. Wu and P.C. Bertels (1983) Isothermal atomisation from a platform in graphite furnace atomic absorption spectrometry. Spectrochim. Acta 38B 1041–1060.

    Google Scholar 

  • Cresser, M.S. and R.F. Browner (1980) A method for investigating size distributions of aqueous droplets in the range 0.5 to 1.0 pm produced by pneumatic nebulisers. Spectrochim. Acta 35B 7379.

    Google Scholar 

  • Delves, H.T. (1970) Microsampling method for the rapid determination of lead in blood by atomic absorptionspectrophotometry. Analyst (London) 95 431–438.

    Article  Google Scholar 

  • Dymott, T.C. (1985) Atomic Absorption with Electrothermal Atomisation Pye Unicam, Cambridge.

    Google Scholar 

  • Ebdon, L. (1982) An Introduction to Atomic Absorption Spectroscopy Heyden, London.

    Google Scholar 

  • Ediger, R.D. (1975) Atomic absorption analysis with the graphite furnace using matrix modification. Atomic Absorption Newslett. 14127–130.

    Google Scholar 

  • Ediger, R.D., G. Peterson and J.D. Kerber (1974) Application of the graphite furnace to saline water analysis. Atomic Absorption Newslett. 13 61–64.

    Google Scholar 

  • Elson, C.M., J. Dostal, D.L. Hynes and C.A.R. de Albuquerque (1978) Silver, cadmium and lead contents of some rock reference samples. Geostand. Newslett. 2 121–123.

    Article  Google Scholar 

  • Ewing, G.W. (1975) Instrumental Methods of Analysis. McGraw-Hill, New York.

    Google Scholar 

  • Fernandez, F.J. and D.C. Manning (1971) Determination of arsenic at sub-microgram levels by atomic absorption spectrophotometry. Atomic Absorption Newslett. 10 86–88.

    Google Scholar 

  • Flanagan, F.J., R. Moore and P.J. Aruscavage (1982) Mercury in geological reference materials. Geostand. Newslett. 6 25–46.

    Article  Google Scholar 

  • Graydon, A.G. and H.G. Wolford (1960) Flames, their Structure, Radiation and Temperature. Chapman and Hall, London, p.304.

    Google Scholar 

  • Gill, R.C.O. and B.I. Kronberg (1975) The precise determination of silicon in fluoborate solutions by atomic absoprtion spectrophotometry. Atomic Absorption Newslett. 14 157–159.

    Google Scholar 

  • Govindaraju, K., R. Hermann, G. Mevelle and C. Chouard (1973) Solid sampling flame atomic absorption determination of caesium in silicate rock samples. Atomic Absorption Newslett. 12 73–76.

    Google Scholar 

  • Govindaraju, K., J. Morel and N. L’Homel (1977) Solid sampling atomic absorption determination of silver in silicate rock reference samples. Application to a homogeneity study of silver in a one-ton two mica granite reference sample. Geostand. Newslett. 1 137–142.

    Article  Google Scholar 

  • Halls, D.J. (1977a) The formation of atoms in the air—acetylene flame. Spectrochim. Acta 32B 221–230.

    Google Scholar 

  • Halls, D.J. (1977b) The efficiency of atomisation of sodium, potassium and lithium in the air—acetylene flame. Spectrochim. Acta 32B 397–412.

    Google Scholar 

  • Holak, W. (1969) Gas sampling technique for arsenic determination by atomic absorption spectrophotometry. Anal. Chem. 41 1712–1713.

    Article  Google Scholar 

  • Horsky, S.J. and W.K. Fletcher (1981) Evaluation of a combined ion exchange—graphite furnace atomic absorption procedure for determination of rare earth elements in geological samples. Chem. Geol. 32 335–340.

    Article  Google Scholar 

  • Imai, N., S. Terashima and A. Ando (1984) Determination of selenium in twenty-eight geological reference materials by atomic absorption spectrometry. Geostand. Newslett. 8 39–41.

    Article  Google Scholar 

  • Ingamells, C.O. (1966) Absorptiometric methods in silicate analysis. Anal. Chem. 38 1228–1234.

    Article  Google Scholar 

  • Kahn, H.L. (1966) Topics in chemical instrumentation. XXV: Instrumentation for atomic absorption 2. J. Chem. Educ. 43 A7 et. seq., A103 et seq.

    Google Scholar 

  • Kahn, H.L. (1968) Principles and practice of atomic absorption. In: Advances in Chemistry Series 73 ‘Trace inorganics in water,’ American Chemical Society, 183–228.

    Google Scholar 

  • Kahn, H.L., G. Dulude, M. Conley and J.J. Sotera (1981) Determination of metals at high concentration by atomic absorption spectroscopy. Canadian Res. 14 27–31.

    Google Scholar 

  • Kahn, H.L., G.E. Peterson and J.E. Schallis (1968) Atomic absorption microsampling with the sampling boat technique. Atomic Absorption Newslett. 7, 35–39.

    Google Scholar 

  • Kaiser, M.L., S.R. Koirtyohann, E.J. Hinderberger and H.E. Taylor (1981) Reduction of matrix interferences in furnace atomic absorption with the L’vov platform. Spectrochim. Acta 36B 773–783.

    Google Scholar 

  • Khalighie, J., A.M. Ure and T.S. West (1979) An investigation of atom collection phenomena in the atomic absorption spectrometry of copper. Anal. Chim. Acta 107 191–200.

    Article  Google Scholar 

  • Khalighie, J., A.M. Ure and T.S. West (1980) Some observations of the mechanism of atomisation in atomic absorption spectrometry with atom trapping and electrothermal techniques. Anal. Chim. Acta 117 257–266.

    Article  Google Scholar 

  • Koirtyohann, S.R. and E.E. Pickett (1965) Background corrections in long path atomic absorption spectrometry. Anal. Chem. 37, 601–603.

    Article  Google Scholar 

  • Koizumi, H. and K. Yasuda (1975) New Zeeman method for atomic absorption spectrophotometry. Anal. Chem. 47 1679–1682.

    Article  Google Scholar 

  • Koizumi, H. and K. Yasuda (1976a) Determination of lead, cadmium and zinc using the Zeeman effect in atomic absorption spectrometry. Anal. Chem. 48 1178–1182.

    Article  Google Scholar 

  • Koizumi, H. and K. Yasuda (1976b) A novel method for atomic absorption spectroscopy based on the analyte-Zeeman effect. Spectrochim. Acta 31B 523–535.

    Google Scholar 

  • Kiss, E. (1982) Determination of silica in geological materials by atomic absorption spectrometry. Anal. Chim. Acta 140 197–204.

    Article  Google Scholar 

  • Langmyhr, F.J. and P.E. Paus (1968) The analysis of inorganic siliceous materials by atomic absorption spectrophotometry and the hydrofluoric acid decomposition technique. Part 1: the analysis of silicate rocks. Anal. Chim. Acta 43 397–408.

    Article  Google Scholar 

  • Langmyhr, F.J. and Y. Thomassen (1973) Atomic absorption spectrophotometric analysis by direct atomisation from the solid phase. I: The determination of rubidium and caesium in silicate rocks. Z. Anal. Chem. 264 122–127.

    Article  Google Scholar 

  • Lee, R.W. and N. Guven (1975) Chemical intereferences in atomic absorption spectrometric analysis of silicates in the fluoboric acid matrix. Chem. Geol. 16 53–58.

    Article  Google Scholar 

  • Lewis, B. and G. van Elbe (1943) Stability and structure of burner flames. J. Chem. Phys. 11 75–97.

    Article  Google Scholar 

  • Liddell, P.R. and K.G. Brodie (1980) Application of a modulated magnetic field to a graphite furnace in Zeeman effect atomic absorption spectrometry. Anal. Chem. 52 1256–1260.

    Article  Google Scholar 

  • Lundberg, E. and W. Frech (1981) Influence of instrumental response time on interference effects in graphite furnace atomic absorption spectrometry. Anal. Chem. 53 1437–1442.

    Article  Google Scholar 

  • L’vov, B.V. (1958) An investigation of atomic absorption spectra by complete vaporisation of a substance in a graphite cell. Inzhener-Fiz. Zhur. Akad. Nauk. Belorus. SSR (Eng. Phys. J. USSR) 2 44–52.

    Google Scholar 

  • Lvov, B.V. (1961) Analytical use of atomic absorption spectra. Spectrochim. Acta 17 761–770.

    Article  Google Scholar 

  • Lvov, B.V. (1978) Electrothermal atomisation—the way towards absolute analysis. Spectrochim. Acta 33B 153–193.

    Google Scholar 

  • L’vov, B.V., L.A. Pelieva and A.I. Sharnopolsky (1977) Decrease in the effect of the base during atomic absorption analysis of solutions in the tube furnaces by evaporation of samples from a graphite substrate. Zh. Prikl. Spektrosk. 27 395–399 (in Russian).

    Google Scholar 

  • Manning, D.C. (1971) High sensitivity arsenic-selenium sampling system for atomic absorption spectroscopy. Atomic Absorption Newslett. 10 123–124.

    Google Scholar 

  • Massmann, H. (1968) Comparison of atomic absorption and atomic fluorescence in graphite cuvettes. Spectrochim. Acta 23B 215–226.

    Google Scholar 

  • Matousek, J.P. (1977) Aeropol deposition in furnace atomisation. Talanta 24 315–319.

    Article  Google Scholar 

  • Medlin, J.H. N.H. Suhr and J.B. Bodkin (1969) Atomic absorption analysis of silicates employing LiBO2 fusion. Atomic Absorption Newslett. 8 25–29.

    Google Scholar 

  • Morton, S.F.N. (1985) Automated Multi-Element Analysis with the PU 9000. Pye Unicam, Cambridge.

    Google Scholar 

  • Oishi, K., Y. Arai, S. Mayama, S. Murayama and K. Fukuda (1980) An application of the Zeeman effect to atomic absorption spectrometry: development of spectral line sources stable in magnetic field. Spectrochim. Acta 35B 155–162.

    Google Scholar 

  • Omang, S.H. (1969) A rapid fusion method for decomposing and comprehensive analysis of silicates by atomic absorption spectrometry. Anal. Chim. Acta 46 225–230.

    Article  Google Scholar 

  • Pecsok, R.L., L.D. Shields, T. Cairns and I.G. McWilliam (1976) Modern Methods of Chemical Analysis John Wiley and Sons, New York.

    Google Scholar 

  • Price, W.J. (1979) Spectrochemical Analysis by Atomic Absorption Heyden, London.

    Google Scholar 

  • Rann, C.S. and A.N. Hambly (1965) Distribution of atoms in atomic absorption flame. Anal. Chem. 37 879–884.

    Article  Google Scholar 

  • Rantala, R.T.T. and D.H. Loring (1975) Multi-element analysis of silicate rocks and marine sediments by atomic absorption spectrophotometry. Atomic Absorption Newslett. 14 117–120.

    Google Scholar 

  • Rubeska, I. and V. Hlavinkova (1979) Determination of arsenic in rocks and soils by atomic absorption spectrophotometry using the MHS-1 automated hydride system. Atomic Absorption Newslett. 18 5–7.

    Google Scholar 

  • Schnepfe, M.M. (1979) Germanium contents of USGS standard rocks by flameless atomic absorption. Geostand. Newslett. 3 9396.

    Article  Google Scholar 

  • Scobbie, R. (1973) The determination of boron, silicon and tungsten by atomic absorption spectroscopy. Technical Topics, Varian Techtron, Springvale, Australia.

    Google Scholar 

  • Sen Gupta, J.G. (1981). Determination of yttrium and rare earth elements in rocks by graphite furnace atomic absorption spectrometry. Talanta 28 31–36.

    Article  Google Scholar 

  • Sen Gupta, J.G. (1984) Determination of cerium in silicate rocks by electrothermal atomisation in a furnace lined with tantalum foil. Talanta 31 1053–1056.

    Article  Google Scholar 

  • Sen Gupta, J.G. (1985) Determination of the rare earths, yttrium and scandium, in silicate rocks and four new geological reference materials by electrothermal atomisation from graphite and tantalum surfaces. Talanta 32 1–6.

    Article  Google Scholar 

  • Shapiro, L. (1967) Rapid analysis of rocks and minerals by a single fusion method. US Geol. Survey Prof. Paper 575-B, B187–B191.

    Google Scholar 

  • Shapiro, L. and W.W. Brannock (1962) Rapid analysis of silicate, carbonate and phosphate rocks. US Geol. Survey Bull. 1144-A.

    Google Scholar 

  • Sighinolfi, G.P. (1973) Determination of thallium in geochemical reference samples by flameless atomic absorption spectroscopy. Atomic Absorption Newslett. 12 136–138.

    Google Scholar 

  • Sighinolfi, G.P., C. Gorgoni and A.M. Santos (1980) Atomic absorption determination of ultratrace elements in geological materials by vapour, hydride-forming techniques. I: mercury. Geostand. Newslett. 4 223–227.

    Article  Google Scholar 

  • Skoog, D.A. and D.M. West (1980) Principles of Instrumental Analysis Holt-Saunders International Edition, Philadelphia, Tokyo.

    Google Scholar 

  • Slavin, W. (1982) Atomic absorption spectroscopy, the present and the future. Anal. Chem. 54 685A–694A.

    Article  Google Scholar 

  • Slavin, W. and D.C. Manning (1980) The L’vov platform for furnace atomic absorption analysis. Spectrochim. Acta 35B 701–714.

    Google Scholar 

  • Slavin, W. and D.C. Manning (1982a) The graphite probe constant temperature furnace. Spectrochim. Acta. 37B 955–964.

    Google Scholar 

  • Slavin, W. and D.C. Manning, (1982b) Graphite furnace interferences, a guide to the literature. Frog. Analyt. Atom. Spectrosc. 5 243–340.

    Google Scholar 

  • Slavin, W., G.R. Carnrick and D.C. Manning (1984) Chloride interferences in graphite furnace atomic absorption spectrometry. Anal. Chem. 56 163–168.

    Article  Google Scholar 

  • Slavin, W., D.C. Manning and G.R. Carnrick (1981) The stabilised temperature platform furnace. Atomic Spectrosc. 2 137–145.

    Google Scholar 

  • Slavin, W., G.R. Carnrick, D.C. Manning and E. Pruszkowska (1983) Recent experiences with the stabilized temperature platform furnace and Zeeman background correction. Atomic Spectrosc. 4 69–86.

    Google Scholar 

  • Smith, D.D. (1983) Unpublished PhD thesis, Georgia Institute of Technology, Atlanta, Georgia.

    Google Scholar 

  • Smith, S., R.G. Schleicher and G.M. Hieftje (1982) New atomic absorption background correction technique. Paper No. 422

    Google Scholar 

  • rd Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Atlantic City, New Jersey.

    Google Scholar 

  • Sotera, J.J. and H.L. Kahn (1982) Background correction in AAS. Am. Lab. 14 100–104.

    Google Scholar 

  • Sotera, J.J., L.C. Cristiano, M.K. Conley and H.L. Kahn (1983) Reduction of matrix interferences in furnace atomic absorption spectrometry. Anal. Chem. 55 204–208.

    Article  Google Scholar 

  • Suhr, N.H. and C.O. Ingamells (1966) Solution technique for analysis of silicates. Anal. Chem. 38 730–734.

    Article  Google Scholar 

  • Trent, D. and W. Slavin (1964) Determination of the major elements in granitic and diabasic rocks by atomic absorption spectroscopy. Atomic Absorption Newslett. 19 17–22.

    Google Scholar 

  • Van Loon, J.C. (1980) Analytical Atomic Absorption Spectroscopy Academic Press, New York.

    Google Scholar 

  • Van Loon, J.C. and C.M. Parissis (1969) Scheme of silicate analysis based on the lithium metaborate fusion followed by atomic absorption spectrophotometry. Analyst (London) 94 1057–1062.

    Article  Google Scholar 

  • Walsh, A. (1955) The application of atomic absorption spectra to chemical analysis. Spectrochim. Acta 7 108–117.

    Article  Google Scholar 

  • Walsh, A. (1980) Atomic absorption spectroscopy—stagnant or pregnant. Spectrochim. Acta 35B 643–652

    Google Scholar 

  • Walsh, A. (1982) Atomic absorption and atomic fluorescence methods of analysis: their merits and limitations. Phil. Trans. Roy. Soc. London A305 485–498.

    Google Scholar 

  • Walsh, J.N. and R.A. Howie (1986) Recent developments in analytical methods: uses of inductively coupled plasma source spectrometry in applied geology and geochemistry. Appl. Geochem. 1.

    Google Scholar 

  • Warren, J. and D. Carter (1975) The determination of trace amounts of copper, vanadium, chromium, nickel, cobalt and barium in silicate rock using flame atomic absorption spectrometry. Can. J. Spectrosc. 20 1–5.

    Google Scholar 

  • Watling, R.J. (1977) The use of a slotted quartz tube for the determination of arsenic, antimony, selenium and mercury. Anal. Chim. Acta 94 181–186.

    Article  Google Scholar 

  • West, M.H., J.F. Molina, C.L. Yuan, D.G. Davis and J.V. Chauvin (1979) Determination of metals in waters and organic materials by flameless atomic absorption spectrometry with a wire loop atomiser. Anal. Chem. 51 2370–2375.

    Article  Google Scholar 

  • West, T.S. and X.K. Williams (1969) Atomic absorption and fluorescence spectroscopy with a carbon filament atom reservoir. I: construction and operation of atom reservoir. Anal. Chim. Acta 45 27–41.

    Article  Google Scholar 

  • Willis, J.B. (1965) Nitrous oxide–acetylene flame in atomic absorption spectroscopy. Nature (London) 207 715–716.

    Article  Google Scholar 

  • Willis, J.B. (1967) Atomisation problems in atomic absorption spectroscopy. I: The operation of a typical nebuliser, spray chamber and burner system. Spectrochim. Acta 23A 811–830.

    Google Scholar 

  • Yule, J.W. and G.A. Swanson (1969) A rapid method for decomposition and the analysis of silicates and carbonates by atomic absorption spectroscopy. Atomic Absorption Newslett. 8 30–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potts, P.J. (1987). Atomic absorption spectrometry. In: A Handbook of Silicate Rock Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3270-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3270-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-216-93209-8

  • Online ISBN: 978-1-4615-3270-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics