Skip to main content

Epitaxy of Solid Solutions and Multilayered Structures in the System Cd—Hg—Te

  • Chapter
Growth of Crystals

Part of the book series: Poct Kphctannob, Rost Kristallov, Growth of Crystals ((GROC,volume 18))

  • 231 Accesses

Abstract

Solid solutions CdxHg1—xTe (CMT) are one of the principal IR microphotoelectronics materials. Quantum-sized multilayered CdTe—HgTe structures are viewed as the most promising for fabricating photodetectors using “band engineering.” With respect to the structural and electrophysical parameters of the CMT films, all common epitaxial methods give the same excellent results. The carrier mobility in n-type Cd0.2Hg0.8Te reaches µ 77 ≥ 2 ·105 cm2 •V/sec at a concentration n ≤ 1015 cm-3. Therefore, liquid-phase epitaxy, metalorganic chemical vapor deposition (MOCVD), sublimational—diffusional gas-phase epitaxy, and molecular-beam epitaxy (MBE) are equally capable of satisfying the demands of traditional photoelectronics in high-quality CMT layers. The single method of preparing quantum-sized structures and superlattices (SL) until very recently was MBE. The advantage of MBE for growing SL based on CMT is the low growth temperature compared to other epitaxy methods. The interdiffusion coefficients of HgTe and CdTe are relatively large. Interdiffusion of the layer components can destroy the SL. If the interdiffusion coefficients of HgTe and CdTe given in the literature are used [1], the calculated thickness of the diffusion layers at 200°C is 0.1-1.0 nm. Superlattices based on CMT can be grown by MBE at 200°C. This growth temperature cannot be exceeded substantially without destroying the sharpness of the composition change at the boundaries of the SL layers. In MOCVD, use of photoactivation [2], precracking [3], flame excitation of the reaction mixture [4], and nontraditional organometallic compounds [5] enabled the CdTe growth temperature to be lowered to 250-200°C (and even to 85°C for HgTe). Thus, ultrathin layers could be synthesized [6]. The development of a hydride MBE method using organometallic compounds, like that already used for A3B5, seems logical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. S. Tang and D. A. Stevenson, “Interdiffusion behavior of HgTe—CdTe junctions,” Appl. Phys. Lett, 50, No. 18, 1272–1274 (1987).

    Article  CAS  Google Scholar 

  2. S. J. C. Irvine, J. B. Mullin, H. Hill, et al., “Photostimulated II—VI crystal growth: A study of low temperature epitaxy,” J. Clyst. Growth, 86, No. 1/4, 188–197 (1988).

    CAS  Google Scholar 

  3. P.-Y. Lu, C.-H. Wang, L. M. Williams, et al., “Epitaxial Hgi1—xCdxTe growth by low-temperature metalorganic chemical vapor deposition,” Appl Phys. Lett., 49, No. 20, 1372–1374 (1986).

    Article  CAS  Google Scholar 

  4. L. M. Williams, P.-Y. Lu, C.-H. Wang, et al., “Plasma enhanced chemical vapor deposition of epitaxial mercury telluride,” Appl Phys. Lett, 51, No. 21, 1738–1740 (1987).

    Article  CAS  Google Scholar 

  5. L. S. Lichtman, L. D. Parsons, and E. H. Citrin, ‘Temperature-independent unassisted pyrolytic-MOCVD growth of cadmium telluride at 250°C using 2,5-dihydrotellurophene,“ J. Cryst. Growth, 86, No. 1/4, 217–221 (1988).

    Google Scholar 

  6. P.Y. Lu, L. M. Williams, C.-H. Wang, and S. N. G. Chu, “HgTe—CdTe superlattices and Hg1—xCdxTe growth by low-temperature metalorganic chemical vapor deposition,” J. Vac. Sci. TechnoL, A, 5, No. 5, 3153–3156 (1987).

    Article  CAS  Google Scholar 

  7. D. L. Smith, T. C. McGill, and J. N. Schulman, “Advantages of HgTe—CdTe superlattice as an infrared detector material,” Appl. Phys. Lett., 43, No. 2, 180–182 (1983).

    Article  CAS  Google Scholar 

  8. J. N. Schulman and T. C. McGill, ‘The CdTe/HgTe superlattice: Proposal for a new infrared material,“ Appl Phys. Lett., 34, No. 10, 663–665 (1979).

    Article  CAS  Google Scholar 

  9. J. P. Faune, A. Million, and J. Piaguet, “CdTe—HgTe multilayers grown by molecular beam epitaxy,” Appl Phys. Leu., 41, No. 8, 713–715 (1982).

    Article  Google Scholar 

  10. L. DiCioccio, A. Million, J. P. Gailliard, and M. Dupuy, “Observation of CdTe—HgTe superlattices by transmission electron microsco-py,” Rev. Phys. Appl, 22, No. 6, 465–468 (1987).

    CAS  Google Scholar 

  11. K. A. Harris, S. Hwang, Y. Lansari, et al., “Growth and properties of dilute magnetic semiconductor superlattices containing Hg1—xMnxTe” J. Vac. Sci TechnoL, B, 5, No. 3, 699 (1987).

    Article  Google Scholar 

  12. J. P. Faune, A. Million, R. Boch, and J. T. Tissot, “Latest developments in the growth of CdxHg1xTe and CdTe—HgTe superlattices by molecular beam epitaxy,” J. Vac. Sci Technol., A, 1, No. 3, 1593–1597 (1983).

    Article  Google Scholar 

  13. J. P. Faune, X. Chu, S. Sivananthan, et al., “Type III—type I transition in Hg1—xCdxTe—CdTe, Hg1—xMnxTe—CdTe, and Hg1—xZnxTe—CdTe superlattices,” J. Vac. Sci. Technol, B, 5, No. 3, 700 (1987).

    Article  Google Scholar 

  14. R. Heckingbottom, G. J. Davies, and K. A. Prior, “Growth and doping of gallium arsenide using molecular beam epitaxy (MBE): Thermodynamic and kinetic aspects,” Surf. Sci. 132, No. 1/3, 375–389 (1983).

    Article  CAS  Google Scholar 

  15. J. P. Faune, A. Million, and J. Piaguet, “Characterization of CdxHg1—xTe p-type layers grown by MBE,” J. Cryst. Growth, 59, No. 1/2, 10–14 (1982).

    Google Scholar 

  16. J. P. Gailliard, “A thermodynamic model of MBE, Application to the growth of II--VI semiconductors,” Rev. Phys. Appl, 22 No. 6, 457–463 (1987).

    CAS  Google Scholar 

  17. A. Koukitu, H. Nakai, T. Suzuki, and H. Seki, “Thermodynamic analysis of MBE of II—VI semiconductors,” J. Cryst Growth, 84, No. 3, 425–430 (1987).

    Article  CAS  Google Scholar 

  18. S. Sivananthan, X. Chu, and J. P. Fannie, “Dependence of the condensation coefficients of Hg on the orientation and stability of the Hg—Te bond for the growth of Hg1—xMxTe (M = Cd, Mn, Zn),” J. Vac. Sci. TechnoL, B, 5, No. 3, 694–698 (1987).

    Article  CAS  Google Scholar 

  19. R. F. Brebrick and A. J. Strauss, “Partial pressures of Hg(g) and Te2(g) in Hg—Te system from optical densities,” J. Phys. Chem. Solids, 26 No. 6, 989–1002 (1965).

    Article  CAS  Google Scholar 

  20. K. A. Harris, S. Hwang, D. K. Blanks, et al., “Growth of HgCdTe and other Hg-based films and multilayers by MBE,” J. Vac. Sci. TechnoL, A, 4 No. 4, 2061–2066 (1986).

    Article  CAS  Google Scholar 

  21. H. A. Mar, K. T. Chee, and N. Salansky, “CdTe films on (001)GaAs:Cr by MBE,”Appl Phys. Lett, 44, No. 2, 237–239 (1984).

    Article  Google Scholar 

  22. H. H. Farrell, J. P. Harbison, and L. D. Peterson, “MBE growth mechanism of GaAs(100) surfaces,” J. Vac. Sci TechnoL, B, 5, No. 5, 1482–1489 (1987).

    Article  CAS  Google Scholar 

  23. M. Pessa, O. Jylhä, P. Huttunen, and M. A. Herman, “Epitaxial growth and electronic structure of CdTe films,” J. Vac. Sci Technoal., A, 2, No. 2, 418–422 (1984).

    Article  CAS  Google Scholar 

  24. M. Pessa, O. Julhä, and M. A. Herman, “Atomic layer epitaxy of CdTe on the polar (111)A and (111)B surfaces of CdTe substrates,” J. Cryst Growth, 67, No. 2, 255–260 (1984).

    Article  CAS  Google Scholar 

  25. M. A. Herman, O. Julhä, and M. Pessa, “Growth mechanism in atomic layer epitaxy. I. Re-evaporation of Cd and Te from CdTe(111) surfaces monitored by Auger electron spectroscopy,” Cyst Res. TechnoL, 21, No. 7, 841–851 (1986).

    Article  CAS  Google Scholar 

  26. M. A. Herman, O. Julhä, and M. Pessa, “Growth mechanism in atomic layer epitaxy. II. A model of the growth process of CdTe on CdTe(111) substrates,” Cryst Res. TechnoL, 21, No. 8, 969–974 (1986).

    Article  CAS  Google Scholar 

  27. S. V. Krishnaswamy, J. H. Rieger, N. G. Doyle, and M. H. Frankombe, “Ion beam sputter deposition and epitaxy of CdTe and HgTeCd films,” J. Vac. Sci TechnoL, A, 5, No. 4, 2106–2110 (1987).

    Article  CAS  Google Scholar 

  28. J. T. Cheung and J. Madden, “Growth of HgCdTe epilayers with any predesigned compositional profile by laser MBE,” J. Vac. Sci TechnoL, B, 5, No. 3, 705–708 (1987).

    Article  CAS  Google Scholar 

  29. A. V. Rzhanov, K. K. Svitashev, A. S. Mardezhov, and V. A. Shvets, “Control of superlattice parameters during their preparation by ellipsometry,” DokL Akad Nauk SSSR, 297, No. 3, 604–607 (1987).

    CAS  Google Scholar 

  30. Y. Lo, R. N. Bicknell, T. H. Myers, et al., “Growth of CdTe films on silicon by molecular layer epitaxy,” J. Appl Phys., 54,No. 7, 4238–4240 (1983).

    Article  CAS  Google Scholar 

  31. R. N. Bicknell, T. H. Myers, and J. F. Schetzina, “Growth of CdTe films on alternative substrates by molecular beam epitaxy,” J. Vac. Sci TechnoL, A,2, No. 2, 423–426 (1984).

    Article  CAS  Google Scholar 

  32. R.-L. Chou, M.-S. Lin, and K.-S. Chou, “Characteristics of CdTe grown on Si by low pressure metalorganic chemical vapor deposition,” Appl Phys. Lett, 48, No. 8, 523–525 (1986).

    Article  CAS  Google Scholar 

  33. N. Matsumura, T. Ohshima, J. Saraie, and Y. Yodogawa, “Preparation of CdTe thin films on Ge substrates by molecular beam epitaxy,” J. Ctyst Growth, 71, No. 2, 361–370 (1985).

    Article  CAS  Google Scholar 

  34. R. Fischer, D. Neuman, H. Zabel, et al., “Dislocation reduction in epitaxial GaAs on Si(111),” Appl Phys. Lett, 48,No. 18, 1223–1225 (1986).

    Article  CAS  Google Scholar 

  35. R. C. Bean, K. R. Zanio, K. A. Hay, et al., “Epitaxial CdTe films on GaAs/Si and GaAs substrates,” J. Vac. Sci TechnoL, A, 4, No. 4, 2153–2157 (1986).

    Article  CAS  Google Scholar 

  36. R. Kay, R. Bean, K. Zanio, et al., “HgCdTe photovoltaic detectors on Si substrates,” Appl. Phys. Lett., 51, No. 26, 2211–2213 (1987).

    Article  CAS  Google Scholar 

  37. H. Zogg and S. Blunier, “Molecular beam epitaxial growth of high structural perfection CdTe on Si using a (Ca, Ba)F2 buffer layer,” Appl Phys. Lett, 49,No. 22, 1531–1533 (1986).

    Article  CAS  Google Scholar 

  38. H. Zogg, P. Maier, and H. Melchior, “Graded Iia fluoride buffer layers for heteroepitaxy of lead chalcogenides and CdTe on Si,” J. Ciyst Growth, 80,No. 2, 408–416 (1987).

    Article  CAS  Google Scholar 

  39. H. Zogg and P. Norton, “Heteroepitaxial PbTe—Si and (Pb, Sn)Se—Si structures for monolithic 3–5, µm and 8–12 µm infrared sensors arrays,” Int. Electron. Develop. Meet., IEEE Publ., New York (1985), pp. 121–124.

    Google Scholar 

  40. H. Zogg, W. Vogt, and H. Melchior, “Heteroepitaxial IV—VI infrared sensors on Si substrates with fluoride buffer layers,” NucL Instnan. Methods Phys. Res., Sect A, A253,No. 3, 418–422 (1987).

    Article  CAS  Google Scholar 

  41. H. Zogg, W. Vogt, and H. Melchior, “Growth of heteroepitaxial lead chalcogenides infrared detector arrays on fluoride covered silicon substrates,” Mater. Res. Soc. Symp. Proc., No. 71, 87–95 (1986).

    Article  CAS  Google Scholar 

  42. R. F. C. Farrow, G. R. Jones, G. M. Williams, and I. M. Young, “Molecular beam epitaxial growth of high structural perfection hetero-epitaxial CdTe films on InSb(100),”Appl Phys. Lett, 39, No. 12, 954–956 (1981).

    Article  CAS  Google Scholar 

  43. T. H. Myers, L. O. Yaucheng, J. F. Schetzina, and S. R. Jost, “Properties of CdTe/InSb heterostructures prepared by MBE,” J. Appl Phys., 53,No. 12, 9232–9234 (1982).

    Article  CAS  Google Scholar 

  44. . S. T. Edwards, A. F. Schreiner, T. H. Myers, and J. F. Schetzina, “Photoluminescence from CdTe/sapphire films prepared by MBE,” J. Appl Phys., 54,No. 11, 6785–6786 (1983).

    Article  CAS  Google Scholar 

  45. R. N. Bicknell, R. W. Yanka, N. C. Giles, et al., “Growth of (100)CdTe on high structural perfection on (100)GaAs substrates by MBE,” Appl Phys. Lett, 44 No. 3, 313–315 (1984).

    Article  CAS  Google Scholar 

  46. A. Zur and T. C. McGill, “Lattice match: An Application to heteroepitaxy,” J. Appl Phys., 55, No. 2, 378–386 (1984).

    Article  CAS  Google Scholar 

  47. C. Hsu, S. Sivananthan, X. Chu, and J. P. Faune, “Polarity determination of CdTe(111) orientation grown on GaAs(100) by MBE,” Appl Phys. Lett, 48, No. 14, 908–914 (1986).

    Article  CAS  Google Scholar 

  48. H. A. Mar, N. Salansky, and K. T. Chee, “Study of the initial stages of growth of CdTe on (001)GaAs,” Appl Phys. Lett, 44, No. 9, 898–900 (1984).

    Article  Google Scholar 

  49. G. Cohen-Solal, F. Bailly, and M. Barbe, “Model for heteroepitaxial growth of CdTe on (100) oriented GaAs substrates,” Appl Phys. Lett, 49 No. 22, 1519–1521 (1986).

    Article  CAS  Google Scholar 

  50. J. P. Faune, C. Hsu, S. Sivananthan, and X. Chu, “CdTe—GaAs(100) interface: MBE growth, RHEED and XPS characterization,” Surf. Sci, 168 No. 1, 477–482 (1986).

    Google Scholar 

  51. S. A. Dvoretsky, A. K. Gutakovsky, V. Yu. Karasev, et al., “Twinning in CdTe(111) films on (100)GaAs substrates,” Inst. Phys. Conf. Ser., No. 93, Vol. 2, 407–408 (1988).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Consultants Bureau, New York

About this chapter

Cite this chapter

Sidorov, Y.G., Chikichev, S.I. (1992). Epitaxy of Solid Solutions and Multilayered Structures in the System Cd—Hg—Te. In: Givargizov, E.I., Grinberg, S.A., Wester, D.W. (eds) Growth of Crystals. Poct Kphctannob, Rost Kristallov, Growth of Crystals, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3268-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3268-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-18118-4

  • Online ISBN: 978-1-4615-3268-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics