Skip to main content

Role of Growth Dislocations in Forming Inhomogeneous Properties in Gallium Arsenide Single Crystals

  • Chapter
Growth of Crystals

Part of the book series: Poct Kphctannob, Rost Kristallov, Growth of Crystals ((GROC,volume 18))

  • 229 Accesses

Abstract

Fabrication of very large ultrafast integrated circuits has sharpened the need for highly homogeneous semiconductors. The great promise of microelectronics is tied to semi-insulating GaAs. However, it has been found that single crystals grown from the melt have inhomogeneous bulk properties. This inhomogeneity correlates on the macro-and microscale with the dislocation distribution. The problem of preparing large dislocation-free GaAs single crystals has not yet been solved even under laboratory conditions. Mass production of single crystals with a relatively high dislocation density (104-105 cm-2) will require methods for decreasing the inhomogeneity of properties. For this, the reasons and mechanisms of formation of the inhomogeneities due to growth dislocations will have to be understood. In the present work, experimental data are used to analyze critically previously proposed mechanisms of formation of the inhomogeneity. A model is presented for formation of micro-and macroinhomogeneous crystal properties. The model is based on the assumption that intrinsic point defects (IPD) recombine quickly near dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Tajima, “Characterization of nonuniformity in semi-insulating LEC GaAs by photoluminescence spectroscopy,” Jpn. J. Appl. Phys. Leu., 21, No. 4, 227–229 (1982).

    Article  CAS  Google Scholar 

  2. R. T. Blunt, S. Clark, and D. J. Stirland, “Dislocation density and sheet resistance variations across semi-insulating GaAs wafers,” IEEE Trans. Electron Devices, 29, No. 7, 1039–1044 (1982).

    Article  Google Scholar 

  3. V. Matsumoto and H. Watanabe, “Inhomogeneity in semi-insulating GaAs revealed by scanning leakage current measurements,” Jpn. J. Appl. Phys. Lett, 21, No. 8, L515–L517 (1982).

    Article  CAS  Google Scholar 

  4. S. Miyazawa, T. Mizutani, and H. Yamazaki, “Leakage current I L variation correlated with dislocation density in undoped, semi-insulating LEC GaAs,“ Jpn. J. Appl. Phys. Lett, 21, No. 9, L542–L544 (1982).

    Article  Google Scholar 

  5. Y. Nanishi, S. Ishida, T. Honda, et al., “Inhomogeneous GaAs FET threshold voltages related to dislocation distribution,” Jpn. J. Appl. Phys. Leu., 21, No. 6, L335–L337 (1982).

    Article  Google Scholar 

  6. D. E. Holmes and R. T. Chen, “Contour maps of EL2 deep level in liquid-encapsulated Czochralski GaAs,” J. Appl. Phys., 55, No. 10, 3588–3599 (1984).

    Article  CAS  Google Scholar 

  7. T. Figielski and T. Wosinski, “Properties and nature of the main electron trap in GaAs,” Czech. J. Phys. B, 34, No. 5, 403–408 (1984).

    Article  Google Scholar 

  8. S. Miyazawa, Y. Ishii, S. Ishida, and Y. Nanishi, “Direct observation of dislocation effects on threshold voltage of a GaAs field-effect transistor,” Appl. Phys. Lett., 43, No. 9, 853–855 (1983).

    Article  CAS  Google Scholar 

  9. A. V. Markov, M. G. Mil’vidskii, and V. B. Osvenskii, “On the role of dislocations in forming properties of single crystals of semi-insulating GaAs,” Fiz Tekh. Poluprovodn., 20, No. 4, 634–640 (1986).

    CAS  Google Scholar 

  10. A. K. Chin, A. R. Von Neida, and R. Caruso, “Spatially resolved cathodoluminescence study of semi-insulating GaAs substrates,” J. Electrochem. Soc., 129, No. 10, 2386–2388 (1982).

    Article  CAS  Google Scholar 

  11. A. V. Markov, S. P. Grishina, M. G. Mil’vidskii, and S. S. Shifrin, “Complexation and thermal stability of electrophysical properties of single crystals of semi-insulating GaAs,” Fiz Tekh. Poluprovodn., 18, No. 3, 465–470 (1984).

    CAS  Google Scholar 

  12. S. S. Shifrin, A. V. Markov, M. G. Mil’vidskii, and V. B. Osvenskii, “Possibilities of studying the relation of dislocation structure of single crystals of semiconductors grown from the melt,” Izv. Akad. Nauk SSSR, Ser. Fiz., 47, No. 2, 295–301 (1983).

    CAS  Google Scholar 

  13. M. S. Abrahams and C. J. Buiocchi, “Etching of dislocations on the low-index faces of GaAs,” J. Appl. Phys., 36, No. 9, 2855–2863 (1965).

    Article  CAS  Google Scholar 

  14. A. T. Hunter, “Spatially resolved luminescence near dislocations in In-alloyed Czochralski-grown GaAs,” Appl. Phys. Len., 47, No. 12, 715–718 (1985).

    Article  CAS  Google Scholar 

  15. I. Fillard, P. Gall, M. Asgarinia, et al., “EL2° distribution in the vicinity of dislocations in GaAs—In materials;’ Jpn. J. Appl. Phys. Lett., 27, No. 5, 899–902 (1988).

    Article  Google Scholar 

  16. A. V. Markov, M. G. Mil’vidskii, and S. S. Shifrin, “Characteristics of the formation of microdefects near dislocations in GaAs crystals doped with various impurities,” Kristallografiya, 29, No. 2, 343–349 (1984).

    CAS  Google Scholar 

  17. F. A. Gimel’farb, A. V. Govorkov, S. P. Grishina, et al., “Microcathodoluminescence study of the decoration of dislocations during growth of doped GaAs single crystals,” Kristallografiya, 19, No. 5, 1115–1117 (1974).

    Google Scholar 

  18. M. G. Mil’vidskii, A. A. Kalinin, A. V. Markov, and A. N. Shershakov, “Role of intrinsic point defects in the formation of micro-defects in doped GaAs crystals,” Fiz Kristalliz, Kalinin, 3–11 (1986).

    Google Scholar 

  19. C. A. Warwick and G. T. Brown, “Spatial distribution of 0.68 eV emission from undoped semi-insulating gallium arsenide revealed by high resolution luminescence imaging,” Appl. Phys. Lett., 46, No. 6, 574–576 (1985).

    Article  CAS  Google Scholar 

  20. P. Dobrilla and D. C. Miller, “Correlation of the etching morphology with the main midgap donor distribution in undoped, semi-insulating GaAs,” J. Electrochem. Soc., 134, No. 12, 3197–3199 (1987).

    Article  CAS  Google Scholar 

  21. I. E. Bondarenko, V. G. Eremenko, B. Ya. Farber, et al., “On the real structure of monocrystalline silicon near dislocation slip planes,” Phys. Status Solidi A, 68, No. 1, 53–60 (1981).

    Article  CAS  Google Scholar 

  22. V. T. Bublik, M. G. Mil’vidskii, and V. B. Osvenskii, “Nature and behavior of point defects in doped single crystals of AIIIBV compounds,” Izv. Vyssh. Uchebn. ZavecL Fiz, No. 1, 7–22 (1980).

    Google Scholar 

  23. M. G. Mil’vidskii, O. V. Pelevin, and B. A. Sakharov, Physicochemical Principles of Obtaining Dissociating Semiconductor Compounds. (As Illustrated by Gallium Arsenide) [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  24. U. Gösele, W. Frank, and A. Seeger, “An entropy barrier against vacancy-interstitial recombination in silicon,” Solid State Commun., 45, No. 1, 31–33 (1983).

    Article  Google Scholar 

  25. A. M. Gomez and P. B. Hirsch, “The dissociation of dislocations in GaAs,” Philos. Mag. A, 38, No. 6, 733–737 (1978).

    Article  CAS  Google Scholar 

  26. S. S. Shifrin and A. V. Markov, “Helicoidal dislocations in GaAs single crystals,” Kristallografiya, 25, No. 5, 1089–1093 (1980).

    CAS  Google Scholar 

  27. V. V. Voronkov, “The mechanism of swirl defect formation in silicon,” J. Cryst. Growth, 59, No. 3, 625–643 (1982).

    Article  CAS  Google Scholar 

  28. J. Lagowski, H. C. Gatos, J. M. Parsey, et al., “Origin of the 0.82 eV electron trap in GaAs and its annihilation by shallow donors,” Appl. Phys. Lett, 40, No. 4, 342–344 (1982).

    Article  CAS  Google Scholar 

  29. A. V. Govorkov and L. I. Kolesnik, “Microcathodoluminescence study of the effect of defect structure on emissive recombination in GaAs,” Fiz Teich. Poluprovodn., 12, No. 3, 448–452 (1978).

    CAS  Google Scholar 

  30. A. G. Cullis, P. D. Augustus, and D. J. Stirland, “Arsenic precipitation at dislocations in GaAs substrate material,” J. Appl.. Phys., 51, No. 5, 2556–2560 (1980).

    Article  CAS  Google Scholar 

  31. I. A. Koval’chuk, A. V. Markov, and M. G. Mil’vidskii, “Effect of melt composition on electrophysical properties and structure of undoped GaAs single crystals,” Izv. Akad Nauk SSSR, Neorg. Mater., 24, No. 2, 324–326 (1988).

    Google Scholar 

  32. V. T. Bublik, V. V. Karataev, R. S. Kulagin, et al., “Nature of point defects in GaAs single crystals as a function of melt composition during growth,” Kristallografya, 18, No. 2, 353–356 (1973).

    CAS  Google Scholar 

  33. I. Fujimoto, “Characterization of stoichiometry in GaAs by x-ray intensity measurements of quasi-forbidden reflections,” Jpn. J. Appl. Phys. Lett, 23, No. 5, 287–289 (1984).

    Article  CAS  Google Scholar 

  34. A. V. Markov and A. N. Morozov, “Reasons for macroscopic inhomogeneity of GaAs single crystals,” Fiz Teich. Poluprovodn., 20, No. 1, 154–157 (1986).

    CAS  Google Scholar 

  35. A. V. Kartavykh and A. V. Markov, “Relation of concentration of EL2 deep centers and dislocation density in semi-insulating GaAs,” Fiz Teich. Poluprovodn., 22, No. 9, 1702–1704 (1988).

    CAS  Google Scholar 

  36. D. A. O. Hope, M. S. Scolnick, B. Cockayne, et al., “A comparison of the deep donor (EL2)° and strain distributions in dislocated and dislocation-free semi-insulating undoped GaAs,” J. Cyst Growth, 71, No. 3, 795–798 (1985).

    Article  CAS  Google Scholar 

  37. A. V. Markov, E. M. Omel’yanovskii, A. Ya. Polyakov, et al., “Effect of dislocations on distribution of deep centers in semi-insulating GaAs,” Fiz Teich. Poluprovodn., 22, No. 1, 44–48 (1988).

    CAS  Google Scholar 

  38. T. Sato, M. Nakajima, T. Fukuda, and K. Ishida, “Stoichiometry dependence of electrical activation efficiency in Si-implanted layers of undoped, semi-insulating GaAs,” Appl. Phys. Lett, 49, No. 23, 1599–1601 (1986).

    Article  CAS  Google Scholar 

  39. T. Egawa, Y. Sano, H. Nakamura, and K. Kaminishi, “Influence of annealing method on microscopic one-to-one correlation between threshold voltage of GaAs MESFET and dislocation,” Jpn. J. Appl. Phys. Lett, 25, No. 12, 973–975 (1986).

    Article  Google Scholar 

  40. D. E. Holmes, H. Kuwamoto, C. G. Kirkpatrick, and R. T. Chen, “Effect of thermal history on properties of LEC GaAs,” in: Semi-insulating III-V Materials, Shiva, Nantwich (1984), pp. 118–125.

    Google Scholar 

  41. T. Inada, T. Fujii, and T. Fukuda, “Native defect related inhomogeneity in characteristics of GaAs field-effect transistors fabricated on annealed dislocation-free substrates,” J. Appl. Phys., 61, No. 12, 5483–5485 (1987).

    Article  CAS  Google Scholar 

  42. D. Rumsby, I. R. Grant, M. R. Brozel, et al., “Electrical behavior of annealed LEC GaAs,” in: Semi-insulating III-V Materials, Shiva, Nantwich (1984), pp. 165–170.

    Google Scholar 

  43. T. Obokata, T. Matsumura, K. Terashima, et al., “Improved uniformity of resistivity distribution in LEC semi-insulating GaAs produced by annealing,” Jpn. J. Appl. Phys. Lett, 23, No. 8, 602–605 (1984).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Consultants Bureau, New York

About this chapter

Cite this chapter

Markov, A.V., Mil’vidskii, M.G., Osvenskii, V.G. (1992). Role of Growth Dislocations in Forming Inhomogeneous Properties in Gallium Arsenide Single Crystals. In: Givargizov, E.I., Grinberg, S.A., Wester, D.W. (eds) Growth of Crystals. Poct Kphctannob, Rost Kristallov, Growth of Crystals, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3268-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3268-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-18118-4

  • Online ISBN: 978-1-4615-3268-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics