Skip to main content

Introduction to SUPREM

  • Chapter
  • 151 Accesses

Part of the book series: The Springer International Series in Engineering and Computer Science ((SECS,volume 243))

Abstract

While the exact form that VLSI technology would take in the future was uncertain in late 1970s, it seemed evident that costly and time- consuming empirical approaches to developing and optimizing such technology are a luxury few will be able to afford or wish to justify. A far more attractive alternative is the formulation of accurate models of the basic physical processes involved, and their implementation in a comprehensive computer program. Such a program would allow predictions of device structures resulting from any proposed fabrication sequence and would minimize the need for empirical iterative attempts. Since its inception, the process simulator SUPREM has been one such attempt to realize this goal. Beginning with SUPREM I and proceeding to SUPREM II and III, each version has drawn from the models and physical understanding of fabrication processes then available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Selberherr, Analysis and Simulation of Semiconductor Devices, New York, Springer-Verlag, 1984.

    Book  Google Scholar 

  2. J. W. Mayer, L. Erikson, and J. A. Davies, Ion Implantation in Semiconductors, New York, Academic Press, 1974.

    Google Scholar 

  3. J. Gibbons and S. Mylroie, “Estimation of impurity profiles in ion-implanted amorphous targets using joined half-Gaussian distributions,” Appl. Phys. Lett., 22, pp. 568–569, June 1973.

    Article  Google Scholar 

  4. W. K. Hofker, D. P. Oosthoek, N. J. Koelman, and H. A. M. De Grefte, Radiation Effects, 24, p. 223, 1975.

    Article  Google Scholar 

  5. H. Ryssel, H. Kranz, K. Muller, R. A. Henkelmann, and J. Biersack, “Comparison of range and range straggling of implanted 10B and 11B in silicon,” Appl. Phys. Lett., 30, pp. 399–401, April 1977.

    Article  Google Scholar 

  6. L. A. Christel, J. F. Gibbons, and S. Mylroie, “Application of the Boltzmann transport equation to ion range and damage distributions in multilayered targets,” J. Appl. Phys., 51, pp. 6176–6182, December 1980.

    Article  Google Scholar 

  7. G. Hobler, and S. Selberherr, “Monte Carlo simulation of ion implantation in two-and three-dimensional structures,” IEEE Trans. CAD, Vol. 8, No. 5, p. 450–459, May 1989.

    Google Scholar 

  8. B. J. Mulvaney, W. B. Richardson, and T. L. Crandle, “PEPPER-A process simulator for VLSI,” IEEE Trans. CAD, Vol. 8, No. 4, pp-3336–349, April 1989.

    Google Scholar 

  9. B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys., 36, p. 3770, 1965.

    Article  Google Scholar 

  10. J. D. Plummer, “The Role of the Si/SiO2 interface in silicon oxidation kinetics,” Electrochem. Soc. Semiconductor Silicon, 1981, pp. 445–454, May 1981.

    Google Scholar 

  11. R. B. Fair, “Oxidation, impurity Diffusion, and defect growth in silicon — An overview,” J. Electrochem. Soc., 128, p. 1360, June 1981.

    Article  Google Scholar 

  12. S. M. Hu, “Formation of stacking faults and enhanced diffusion in the oxidation of silicon,” J. Appl. Phys., 45, pp. 1567–1573, April 1974.

    Article  Google Scholar 

  13. W. A. Tiller, “On the kinetics of the thermal oxidation of silicon, l.A Theoretical perspective,” J. Electrochem. Soc., 127, pp. 619–624, March 1980.

    Article  Google Scholar 

  14. C. P. Ho and J. D. Plummer, “Si-SiO2 interface oxidation kinetics: A physical model for the influence of high substrate doping levels. I. Theory,” J. Electrochem. Soc., 126, pp. 1516–1522, September 1979.

    Article  Google Scholar 

  15. C. P. Ho and J. D. Plummer, “Si-SiO2 interface oxidation kinetics: A physical model for the influence of high substrate doping levels. II. Comparison with experiment and discussion,” J. Electrochem. Soc., 126, pp. 1523–1530, September 1979.

    Article  Google Scholar 

  16. P. S. Dobson, “The Effect of oxidation on anomalous diffusion in silicon,” Philosophical Mag., 24, pp. 567–576, 1971.

    Article  Google Scholar 

  17. P. S. Dobson, “The mechanism of impurity diffusion in silicon,” Philosophical Mag., 26, pp. 1301–1306, 1972.

    Article  Google Scholar 

  18. S. P. Murarka, “Role of point defects in the growth of the oxidation-induced stacking fault in silicon,” Phys. Rev. B, Vol. 16, pp. 2849–2857, 1977.

    Article  Google Scholar 

  19. A. M. Lin, R. W. Dutton, D. A. Antoniadis, and W. A. Tiller, “The growth of oxidation stacking faults and the point defect generation at Si-SiO2 interface during thermal oxidation of silicon,” J. Electrochem. Soc., 128, pp. 1121–1130, May 1981.

    Article  Google Scholar 

  20. D. W. Hess and B. E. Deal, “Kinetics of the thermal oxidation of silicon in O2HCI mixtures,” J. Electrochem. Soc., 124, pp. 735–739, May 1977.

    Article  Google Scholar 

  21. B. E. Deal, “Thermal oxidation kinetics of silicon in pyrogenic H2O and 5% HC1 H2O mixtures,” J. Electrochem. Soc., 125, pp. 576–579, April 1978.

    Article  Google Scholar 

  22. R. R. Razouk, L. N. Lie, and B. E. Deal, “Kinetics of high pressure oxidation of silicon in pyrogenic steam,” J. Electrochem. Soc., 128, pp. 2214–1110, Oct. 1981.

    Article  Google Scholar 

  23. L. N. Lie, R. R. Razouk, and B. E. Deal, “High pressure oxidation of silicon in dry oxygen,” J. Electrochem. Soc., 129, pp. 2828–2834, Dec. 1982.

    Article  Google Scholar 

  24. Y. J. van der Meulen, “Kinetics of thermal growth of ultra-thin layers of SiO2 on silicon. I. Experiment,” J. Electrochem. Soc., 119, pp. 530–534, 1972. R. Ghez and Y. J. van der Meulen, “Kinetics of thermal growth of ultra-thin layers of SiO2 on silicon. Part II. Theory,” J. Electrochem. Soc., 119, pp. 1100-1106, 1972.

    Article  Google Scholar 

  25. B. E. Deal and M. Sklar, “Thermal oxidation of heavily doped silicon,” J. Electrochem. Soc., 12, pp. 430–435, April 1965.

    Article  Google Scholar 

  26. W. Shockley and J. L. Moll, “Solubility of flaws in heavily doped semiconductors,” Phys. Rev., 119, pp. 1480–1482, Sept. 1960.

    Article  Google Scholar 

  27. J. A. Van Vechten, and C. D. Thurmond, “Entropy of ionization and temperature variation of ionization levels of defects in semiconductors,” Phys. Rev. B.. 14, p. 3539, October 1976.

    Google Scholar 

  28. R. J. Kriegler, Y. C. Cheng, and D. R. Colton, “The effect of HC1 and Cl2 on the thermal oxidation of silicon,” J. Electrochem. Soc., 119, pp. 388–392, 1972.

    Article  Google Scholar 

  29. P. H. Robinson and F. P. Heiman, “Use of HC1 gettering in silicon device processing,” J. Electrochem. Soc., 118, pp. 141–143, 1971.

    Article  Google Scholar 

  30. C. M. Osburn, “Dielectric breakdown properties of SiO2 films grown in halogen and hydrogen containing environments,” J. Electrochem. Soc., 121, pp. 809–815, 1974.

    Article  Google Scholar 

  31. K. Hirabayashi and J. Iwamura, “Kinetics of thermal growth of HCl-O2 oxides on silicon,” J. Electrochem. Soc., 120, pp. 1595–1601, 1973.

    Article  Google Scholar 

  32. Y. J. Van der Meulen, C. M. Osburn, and J. F. Ziegler, “Properties of SiO2 grown in the presence of HC1 or Cl2,” J. Electrochem. Soc., 122, pp.284–290, 1975.

    Article  Google Scholar 

  33. A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley and Sons, New York, 1967.

    Google Scholar 

  34. H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen: growth rate enhancement in the thin regime. I. Experimental results,” J. Electrochem. Soc., 132, pp. 2685–2693, Nov. 1985.

    Article  Google Scholar 

  35. P. M. Fahey, P. B. Griffin, and J. D. Plummer, “Point defects and dopant diffusion in silicon,” Reviews of Modern Physics, Vol. 61, No. 2, pp. 289–384, April 1989.

    Article  Google Scholar 

  36. C. P. Ho, S. E. Hansen, P. M. Fahey, “SUPREM III-A Program for Integrated Circuit Process Modeling and Simulation,” Stanford Technical Report, SEL 84-001, July 1984.

    Google Scholar 

  37. M. E. Law and R. W. Dutton, “Verification of analytic point defect models using SUPREM — IV,” IEEE Trans. Computer-Aided Design, Vol. CAD-7, pp. 181–190, Feb. 1988.

    Article  Google Scholar 

  38. R. B, Fair, “Chapter 7: Concentration profiles of diffused dopants in silicon,” Impurity Doping Processes in Silicon, edited by F. F. Y. Wang, North-Holland Pub. Co., Amsterdam, 1981.

    Google Scholar 

  39. D. A. Antoniadis, R. W. Dutton, “Models for computer simulation of complete IC fabrication process,” IEEE Trans. Elect. Dev., Vol. ED-26, No. 4, pp. 490–500, April 1979.

    Article  Google Scholar 

  40. M. Y. Tsai, F. F. Morehead, J. E. E. Baglin, and A. E. Michael, “Shallow junctions by high dose As implants in Si: Experiments and modeling,” J. Appl. Phys., 51, p. 3230, 1980.

    Article  Google Scholar 

  41. T. Kato, Y. Nishi, “Redistribution of diffused boron in silicon by thermal oxidation,” Japan. J. Appl. Phys. 3, p. 377, 1964.

    Article  Google Scholar 

  42. A. M. Lin, D. A. Antoniadis, R. W. Dutton, “The oxidation rate dependence of oxidation-enhanced diffusion of boron and phosphorus in silicon,” J. Electrochem. Soc., 128, p. 1131, May 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dutton, R.W., Yu, Z. (1993). Introduction to SUPREM. In: Technology CAD — Computer Simulation of IC Processes and Devices. The Springer International Series in Engineering and Computer Science, vol 243. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3208-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3208-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6408-5

  • Online ISBN: 978-1-4615-3208-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics