Advertisement

Asymptotic Behavior of Morphological Filters

  • Lasse Koskinen
  • Jaakko Astola

Abstract

The connection between morphological and stack filters is used in the analysis of the statistical properties of morphological filters. Closed-form expressions for the output distributions of morphological filters are given, and their statistical symmetry properties are analyzed. Asytotically tight bounds on the expectations of two-dimensional morphological filters, and asymptotic formulas for the variances of one-dimensional morphological filters are derived. These results form the basis for analyzing general asymptotic properties of morphological filters.

Key words

morphological filters stack filters statistical properties asymptotic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Stevenson and G. Arce, “Morphological filters: statistics and further syntactic properties,” IEEE Trans. Circuits and Systems,vol. ASSP-34, pp. 1292–1305, 1987.CrossRefGoogle Scholar
  2. 2.
    D. Schonfeld and J. Goutsias, “Optimal morphological pattern restoration from noisy binary images,” IEEE Trans. Patt. Anal. Mach. Intell., vol. PAMI-13, pp. 14–29, 1990.Google Scholar
  3. 3.
    P. Maragos and R. Schafer, “Morphological filters — part II: their relations to median, order-statistics, and stack filters,” IEEE Trans. Acoust. Speech Signal Process. vol. ASSP-35, pp. 1170–1184, 1987.MathSciNetCrossRefGoogle Scholar
  4. 4.
    L. Koskinen, J. Astola, and Y. Neuvo, “Morphological filtering of noisy images,” in Visual Communications and Image Processing’90: Fifth in a Series, M. Kunt, ed., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1360, pp. 155–165, 1990.CrossRefGoogle Scholar
  5. 5.
    L. Koskinen, J. Astola, and Y. Neuvo, “Analysis of noise attenuation in morphological image processing,” in Nonlinear Image Processing II,G.R. Arce, C.G. Boncelet, and E.R. Dougherty, eds., Proc. Soc. Photo-Opt. Instrum. Eng., vol. 1451, pp. 102–113, 1991.CrossRefGoogle Scholar
  6. 6.
    P. Rustanius, L. Koskinen, and J. Astola, “Theoretical and experimental analysis of the effects of noise in morphological image processing,” in Proc. SPIE Symp. on Image Algebra and Morphological Image Processing III, San Diego, CA, July 1992.Google Scholar
  7. 7.
    E. Dougherty and C. Ciardiana, Morphological Methods in Image and Signal Processing, Prentice-Hall: Englewood Cliffs, NJ, 1988.Google Scholar
  8. 8.
    S. Serra, Image Analysis and Mathematical Morphology, Academic Press: London, 1988.Google Scholar
  9. 9.
    P. Maragos and R. Schafer, “Morphological filters — Part I: their set theoretic analysis and relations to linear shift-invariant filters,” IEEE Trans. Acoust., Speech,Signal Process. vol. ASSP-35, pp. 1153–1169, 1987.MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Matheron, Random Sets and Integral Geometry, John Wiley: New York, 1975.zbMATHGoogle Scholar
  11. 11.
    C. Chu and E. Delp, “Impulsive noise suppression and background normalization of electrocardiogram signals using morphological operators,” IEEE Trans. Biomed. Eng., vol. 36, pp. 226–273, 1989.CrossRefGoogle Scholar
  12. 12.
    P. Wendt, E. Coyle, and N. Callager, “Stack filters,” IEEE Trans. Acoust., Speech, Signal Process. vol. ASSP-34, pp. 898–911, 1986.CrossRefGoogle Scholar
  13. 13.
    O. Yli-Harja, J. Astola, and Y. Neuvo, “Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation,” IEEE Trans. Signal Process., vol. 39, pp. 395–410, 1991.zbMATHCrossRefGoogle Scholar
  14. 14.
    L. Koskinen, J. Astola, and Y. Neuvo, “Statistical properties of discrete morphological filters,” in Proc. IEEE Int. Symp. on Circuits and Systems, New Orleans, LA, May 1990, pp. 1219–1222.Google Scholar
  15. 15.
    E. Castillo, Extreme Value Theory in Engineering,Academic Press: London, 1988.zbMATHGoogle Scholar
  16. 16.
    J. Galambos, The Asymptotic Theory of Order Statistics, John Wiley: New York, 1978.zbMATHGoogle Scholar
  17. 17.
    L. Koskinen and J. Astola, “Statistical properties of soft morphological filters,” in Proc. SPIE Symp. on Nonlinear Image Processing III, San Jose, CA, February 1992.Google Scholar
  18. 18.
    J. Astola and Y. Neuvo, “An efficient tool for analyzing weighted median and stack filters,” submitted to IEEE Trans. Circuits and Systems. Google Scholar
  19. 19.
    B. Justusson, “Median filtering: statistical properties,” in Topics in Applied Physics, Two Dimensional Digital Signal Processing II, T.S. Huang, ed., Springer-Verlag: Berlin, 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Lasse Koskinen
    • 1
  • Jaakko Astola
    • 1
  1. 1.Department of Mathematical SciencesTampere UniversityTampereFinland

Personalised recommendations