Skip to main content

A Computer Model for Rheology: Proving the Existence and Cause of Dilatancy

  • Chapter
  • 932 Accesses

Abstract

In Chapters 20 and 21, the significance of dilatancy and its effects upon the flow properties of crowded participate suspensions were discussed. It was suggested that the most common form of rheology is yield-dilatant, rather than Bingham plastic or yield-pseudoplastic. Yield-dilatant behavior suggests the existence of two yield stresses: the zero shear rate plastic yield stress, typ, common to Bingham plastics which is associated with the colloidal particles in the suspensions, and a dilatant yield stress, td, which is associated with the interference to flow of the largest particles at high shear rate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Umeya, K., and Kanno, T., “Effect of Flocculation on the Dilatant Flow for Aqueous Suspensions of Titanium Dioxides,” J. Rheology, 23(2) 123–140 (1979).

    Article  CAS  Google Scholar 

  2. Probstein, R.F., and Sengun, M.Z., “Dense Slurry Rheology with Application to Coal Slurries. ” PhysicoChemical Hydrodynamics, 9[1/2] 299–313 (1987).

    Google Scholar 

  3. Russel, W.B., “The Rheology of Suspensions of Charged Rigid Spheres,” J. Fluid Mech., 85(2) 209–232 (1978).

    Article  CAS  Google Scholar 

  4. Durlofsky, L., Brady, J.F., and Bossis, G., “Dynamic Simulation of Hydrodynamically Interacting Particles,” J. Fluid Mech., 180 21–49 (1987).

    Article  CAS  Google Scholar 

  5. Haff, P.K., “Grain Flow as a Fluid-Mechanical Phenomenon,” J. Fluid Mech., 134 404–430 (1983).

    Article  Google Scholar 

  6. Lun, C.K., Savage, S.B., Jeffrey, D.J., and Chepurnity, N., “Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field,” J. Fluid Mech., 140 223–256 (1984).

    Article  Google Scholar 

  7. Farrell, M., Lun, C.K., and Savage, S.B., “A Simple Kinetic Theory for Granular Flow of Binary Mixtures of Smooth, Inelastic, Spherical Particles,” Acta Mechanica, 63 45–60 (1986).

    Article  Google Scholar 

  8. Jenkins, J.T., and Savage, S.B., “A Theory for the Rapid Flow of Identical Smooth, Nearly Elastic Particles.” J. Fluid Mech., 130 187–202 (1983).

    Article  Google Scholar 

  9. Campbell, C.S., and Gong, A., “The Stress Tensor in a Two-Dimensional Granular Shear Flow,” J. Fluid Mech., 164 107–125 (1986).

    Article  Google Scholar 

  10. Campbell, C.S., and Brennen, C.E., “Chute Flows of Granular Material: Some Computer Simulations,” Trans. ASME: J. Appl. Mech., 52 172–178 (1985).

    Article  CAS  Google Scholar 

  11. Walton, O.R., and Braun, R.L., “Viscosity, Granular-Temperature, and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks,” Journal of Rheology, 30 949–980 (1986).

    Article  Google Scholar 

  12. Walton, O.R., “Explicit Particle Dynamics Model for Granular Materials,” Proceedings of the 4th International Conference on Numerical Methods in Geomechanics, 3, May 31-June 4, Edmonton, Alberta, Canada (1982).

    Google Scholar 

  13. Bird, G.A., Molecular Gas Dynamics, Clarendon Press Oxford, (1976).

    Google Scholar 

  14. Campbell, C.S., Shear Flow of Granular Materials, California Institute of Technology, PhD Thesis (1982).

    Google Scholar 

  15. Bagnold, R.A., “The Shearing and Dilation of dry sand and the’ singing’ Mechanism,” Proc. Roy. Soc., A295 219 (1966).

    Google Scholar 

  16. Nedderman, R.M., and Tuzun, V., “A Kinetic Model for the Row of Granular Materials Round Obstacles,” Powder Technology, 22 243 (1979).

    Article  Google Scholar 

  17. Nedderman, R.M., Davies, S.T., and Horton, D.J., “The Row of Granular Materials in Conical Hoppers,” Powder Technology, 25 215 (1980).

    Article  Google Scholar 

  18. Vand, V., “Viscosity of Solutions and Suspensions I,” J. Phys. and Colloid Chem., 52 277–300 (1948).

    Article  CAS  Google Scholar 

  19. Bedeaux, D., “The Effective Viscosity for a Suspension of Spheres,” j. Coll. Int. Sci., 118 80–90 (1987).

    Article  CAS  Google Scholar 

  20. Robinson, J.E., “The Viscosity of Suspensions of Spheres,” J. Phys. & Coll. Chem., 53 1042–1047 (1949).

    Article  CAS  Google Scholar 

  21. Everson, G.F., Rheology of Disperse Systems, pp. 61, Pergamon Press, London (1959).

    Google Scholar 

  22. Maron, H.S., and Fok, M.S., “Rheology of Synthetic Latex,” J. Coll. Sci., 10 482–486(1955).

    Article  CAS  Google Scholar 

  23. Williams, P.S., “Row of Concentrated Suspensions,” J. Appl. Chem., 3 120–128 (1953).

    Article  CAS  Google Scholar 

  24. Krieger, I.M., “Rheology of Monodisperse Lattices,” Adv. Coll. Int. Sci., 3 111–136 (1972).

    Article  CAS  Google Scholar 

  25. Einstein. A.,Investigation of the Brownian Movement, Dover, NY (1956).

    Google Scholar 

  26. Roscoe, R., “Suspensions”, pp. 2–38 in Flow Properties of Disperse

    Google Scholar 

  27. Farris, R.J., “Prediction of the Viscosity of Multimodal Suspensions from Unimodal Viscosity Data,” Trans. Soc. of Rheology, 12 281–301 (1968).

    Article  Google Scholar 

  28. Mooney, M., “The Viscosity of Concentrated Suspensions of Spherical Particles,” J. Coll. Sci., 3 162–195 (1951).

    Article  Google Scholar 

  29. Frankel, N.A., and Acrivos, A., “the Viscosity of a Concentrated Suspension of Solid Spheres,” Chenu Eng. Science, 22 847–853 (1967).

    Article  Google Scholar 

  30. Simha, R., “A Treatment of the Viscosity of Concentrated Suspensions,” J. Appl. Phys., 23 1020–1025 (1940).

    Article  Google Scholar 

  31. Thomas, D.G., “Transport Characteristics of Suspensions,” J. Coll. Sci., 20 267–272 (1965).

    Article  CAS  Google Scholar 

  32. Derjaguin, B., and Landau, L., “Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolyte,” Acta Physicochim., 14, 633–662 (1941).

    Google Scholar 

  33. Verwey, E.J.W., and Overbeek, J.Th.G.,Theory of the Stability of Lyophobic Colloids, Elsevier Pub. Co., NY (1948).

    Google Scholar 

  34. Lun, C.K.K., “The Effects of an Impact Velocity Dependent Coefficient of Restitution on Stresses Developed by Sheared Granular Materials,” Acta Mechanica, 63 15–44 (1986).

    Article  Google Scholar 

  35. Walton, O.R., and Braun, R.L., “Stress Calculations for Assemblies of Inelastic Spheres in Uniform Shear,” Lawrence Livermore National Laboratory, DOE report, Dec (1985).

    Google Scholar 

  36. Goldstein, S., “The Steady Flow of Viscous Fluid Past a Fixed Spherical Obstacle at Small Reynolds Numbers,” Proc. Roy. Soc., A123. 225 (1927).

    Google Scholar 

  37. Faxen, H., “Gegenseitige Einwirkung Zweier Kugeln, Die in Einer Zahen Flussigkeit Fallen,” Arkiv for Matematik, Astronomi und Physik, 19 (1925).

    Google Scholar 

  38. Jeffery, G.B., “Ellipsoidal Particles Immersed in a Viscous Fluid,” Proc. Roy. Soc., A102 161–179 (1922).

    Google Scholar 

  39. Hafaiedh, A., “Computer Modelling of the Rheology of Particulate Suspensions,” Alfred University, PhD Thesis (1988).

    Google Scholar 

  40. Sadron, Ch., “Dilute Solutions of Impenetrable Rigid Particles”, pp. 130–198 in Flow Properties of Disperse Systems, edited by J. J. Hermans, North-Holland Publishing Company, Amsterdam (1953).

    Google Scholar 

  41. Hafaiedh, A., “Rheological Modeling of Highly Loaded Slips or Slurries,” M.S. Thesis, Alfred University, June (1986).

    Google Scholar 

  42. Funk, J.E., Jr., Dinger, D.R., and Funk, J.E., Sr., “Control Parameters for a 75 Wt% Coal-Water Slurry: Co-AL,” Proceedings of the 4th International Symposium of Coal Slurry Combustion, Orlando, FL, Vol. 4, 10–12 May (1982).

    Google Scholar 

  43. Freundlich, H., and Jones, A.D., “Sedimentation Volume, Dilatancy, Thixotropic and Plastic Properties of Concentrated Suspensions,” The Journal of Physical Chemistry, 40, 1217–1235 (1936).

    Article  CAS  Google Scholar 

  44. Pryce-Jones, J., “Rheology of Suspensions,” J. Oil and Colour Chemists Assoc., 19,295–301 (1936).

    CAS  Google Scholar 

  45. Dinger, D.R., Funk, J.E., Jr., and Funk, J.E., Sr., “Rheology of a High Solids Coal-Water Mixture,” Proceedings of the 4th International Symposium on Coal Slurry Combustion, Orlando, FL, May (1982).

    Google Scholar 

  46. Goldsmith, W., Impact, the Theory and Physical Behavior of Colliding Solids, Edward Arnold Publishing, 5–21 (1960).

    Google Scholar 

  47. Raman, C.V., “The Photographic Study of Impact at Minimal Velocities,” Phys Rev, 12, 442–451 (1918).

    Article  Google Scholar 

  48. Ischida, M., and Shirai, T., “Velocity Distributions in the Flow of Solid Particles in an Inclined Open Channel,” J Chem Eng of Japan, 12, 46–50 (1979).

    Article  Google Scholar 

  49. Savage, S.B., “Granular Flows Down Rough Inclines-Review and Extension,” pp. 261–282 in Mechanics of Granular Materials: New Models and Constitutive Relations, Jenkins, J.T., and Satake, M., eds., Elsevier Science Publishers (1983).

    Google Scholar 

  50. Funk, J.E., “Coal Water Slurry and Method for Its Preparation,” U.S. Patent 4,416,666, Nov 22 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Funk, J.E., Dinger, D.R. (1994). A Computer Model for Rheology: Proving the Existence and Cause of Dilatancy. In: Predictive Process Control of Crowded Particulate Suspensions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3118-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3118-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-9409-9

  • Online ISBN: 978-1-4615-3118-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics