Skip to main content

Thin Film Multilayer Interconnection Technologies for Multichip Modules

  • Chapter
Multichip Module Technologies and Alternatives: The Basics

Abstract

Historically there has been a wide gap between the feature geometries on integrated circuits (ICs) (typically —1 pm) and those of IC packages and printed wiring boards (PWBs) (typically 50-100 pm). To achieve the ultimate density and speed in electronic systems, this gap must be closed, and it is inevitable that the thin film processes used to fabricate ICs will be required for IC packaging. In recent years, there has been active development of thin film multilayer (TFML) structures to provide high density interconnections between ICs in multichip modules (MCMs). The materials, processes, and designs for TFML interconnections are the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. J. Bahl and R. Garg, “A Designer’s Guide to Stripline Circuits,” Microwaves, vol. 17, pp. 90–95, Jan. 1978.

    Google Scholar 

  2. E.E. Davidson, “Electrical Design of a High Speed Computer ackaging System,” IEEE Trans. CHMT., vol. CHMT-6, no. 3, pp. 272–282, 1982.

    Google Scholar 

  3. K. Jayaraj, et al., “Performance of Low Loss, High Speed Interconnects for Multi-GHz Digital System,” Proc. IEEE Nat. Aerospace and Elect. Conf, (Dayton, OH), pp. 1674–1681, May 1989.

    Google Scholar 

  4. “Alcoa Thin Film Design Guide,” Rev. 92–04, Alcoa Electronic Packaging Inc., San Diego, CA, 1992.

    Google Scholar 

  5. F. D. Austin, D. C. Green, M. A. Robbins, “VCOS (VHSIC Chips-on-Silicon): Packaging, Performance and Applications,” Digest of Papers, Government Microcircuit Appl. Conf, (Las Vegas, NV), pp. 577–581, Nov. 1990.

    Google Scholar 

  6. B. K. Gilbert, G. W. Pan, “Packaging of GaAs Signal Processors on Multichip Modules,” IEEE Trans. CHMT., vol. CHMT-15, no. 1, pp. 15–28, 1992.

    Google Scholar 

  7. B.C. Foster, et al., “Advanced Ceramic Substrate for Multichip Modules with Multilevel Thin Film Interconnects,” IEEE Trans. CHMT., vol. CHMT-14, no. 4, pp. 784–789, 1991.

    Google Scholar 

  8. E. E. Davidson, et al., “The Design of the ES/9000 Module,” IEEE Trans. CHMT., vol. CHMT-14, no. 4, pp. 744–748, 1991.

    Google Scholar 

  9. T. Inuoe, et al., “Microcarrier for LSI Chip Used in the H1TAC M-880 Processor Group,” IEEE Trans. CHMT., vol. CHMT-15, no. 1, pp. 7–14, 1992.

    Google Scholar 

  10. R. D. Nicholson, R. S. Fusco, “Copper Clad Molybdenum for High Performance Electronics,” Proc. ASM 3rd Conf. on Electronic Packaging, (Minneapolis, MN), pp. 87–90, April 1987.

    Google Scholar 

  11. R. C. Eden, “Applicability of Diamond Substrates to Multi-chip Modules,” Proc. Internat. Symp. Microelect., (Orlando, FL), pp. 363–367, Oct. 1991.

    Google Scholar 

  12. Y. H. Kimet al “Adhesion and Interface Investigation of Polyimide on Metals,” J. Adhesion Sci. Tech., vol. 2, no. 2, pp. 95–105, 1988.

    Article  Google Scholar 

  13. N. G. Koopman, T. C. Reiley, P. A. Totta, “Chip-to-Package Interconnections,” Microelectronics Packaging Handbook, R. R. Tummala, E. J. Rymaszewski, eds., New York: Springer Science+Business Media New York, 1989, Chapter 6.

    Google Scholar 

  14. R. J. Jensen, J. P. Cummings, H. Vora, “Copper/Polyimde Materials System for High Performance Packaging,” IEEE Trans. Components Hybrids Manuf. Techn., vol. 7, no. 4, pp. 384–393, 1984.

    Article  Google Scholar 

  15. B. T. Merriman, et al., “New Low Coefficient of Thermal Expansion Polyimide for Inorganic Substrates,” Proc. 39th Electronic Components Conf, (Houston TX), pp. 155–159, May 1989.

    Book  Google Scholar 

  16. N. H. Hendricks, “Thermoplastic Polyquinolines: New Organic Dielectrics For Highly Demanding Packaging Applications,” Proc. Internat. Symp. Microelectr., (Orlando FL), pp 105–109, Oct. 1991.

    Google Scholar 

  17. S. M. Sze, ed. VLSI Technology, 2nd edition, New York,: McGraw-Hill, 1988.

    Google Scholar 

  18. J. L. Vossen, W. Kern, eds, Thin Film Processes, New York: Academic, 1978.

    Google Scholar 

  19. D. Darrow, S. Vilmer-Bagen, “A Comparative Analysis of Thin Film Metallization Methodologies for High Density Multilayer Hybrids,” Proc. Internat. Conf Multichip Module, (Denver, CO), pp. 56–70, April 1992.

    Google Scholar 

  20. C. J. Bartlett, J. M. Segelken, N. A. Teneketges, “Multichip ackaging Design for VLSI-based Systems,” IEEE Trans. CHMT., vol. CHMT-12, no. 4, pp. 6479–653, 1987.

    Google Scholar 

  21. R. Miracky, et al., “Laser Customization of Multichip Modules,” Digest of Papers, Government Microcircuit Appl. Conf, (Orlando, FL), pp. 235–238, Nov. 1991.

    Google Scholar 

  22. D. S. Soane, Z. Martynenko, Polymers in Microelectronics: Fundamentals and Applications, Amsterdam: Elsevier, 1989, Chapter 4.

    Google Scholar 

  23. C. Speerschneider, et al., “Honeywell’s VHSIC Phase 2 Packaging Technology,” Proc. VHSIC Packagingin Conf., (Houston TX), pp. 131–143, April 1987.

    Google Scholar 

  24. T. Snodgrass, G. Blackwell, “Advanced Dispensing and Coating Technologies for Polyimide Films,” Proc. Internat. Conf. Multichip Modules, (Denver, CO), pp. 428–435, April 1992.

    Google Scholar 

  25. H. J. Neuhaus, “A High Resolution, Anisotropic Wet Patterning Process Technology for MCM Production,” Proc. Internat. Conf. Multichip Modules, (Denver, CO), pp. 256–263, April 1992.

    Google Scholar 

  26. T. Tessier, “Compatibility of Common MCM-D Dielectrics with Scanning Laser Ablation Via Generation Processes,” Proc. 42nd Elect. Components and Tech. Conf., (San Diego, CA), pp. 763–769, May 1992.

    Google Scholar 

  27. T. F. Redmond, C. Prasad, G. A. Walker, “Polyimide Copper Thin Film Redistribution on Glass-ceramic/Copper Multilevel Substrates,” Proc. 41st Elect. Components and Tech. Conf, (Atlanta, GA), pp. 689–692, May 1991.

    Google Scholar 

  28. J. T. Pan, S. Poon, B. Nelson, “A Planar Approach to High Density CopperPolyimide Interconnect Fabrication,” Proc 8th Internat. Elect. Packaging Conf. (Dallas, TX), pp. 174–189, Nov. 1988.

    Google Scholar 

  29. C. W. Ho, VISI Electronics: Microstructure Science, N. G. Einspruch, ed., New York: Academic, 1982, vol. 5, chapter 3.

    Google Scholar 

  30. A. Keely, C. Ryan, “Achieving a Balance of Thermal Performance and Routing Density in a Multichip Module Substrate,’ Proc. NEPCON East ‘81, (Boston, MA), pp. 551–561, June, 1991.

    Google Scholar 

  31. R. Darveaux, I. Turlik, “Backside Cooling of Flip Chip Devices in Multichip Modules,” Proc. Internat. Conf. Multichip Modules, (Denver, CO), pp. 230–241, April 1992.

    Google Scholar 

  32. J. K. Hagge, “Ultra-reliable Packaging for Silicon-on-Silicon WSI,” IEEE Trans. CHMT., vol. CHMT-12, no. 2, pp 170–179, 1989.

    Google Scholar 

  33. T. J. Moravec, et al., “Multichip Modules for Today’s VLSI Circuits,” Elect. Packaging and Prod., vol. 30, no. 11, pp. 48–53, Nov. 1990.

    Google Scholar 

  34. R. E. Maurer, “The AT&T MCM Packaging Program,” Proc. Internat. Conf. Multichip Modules, (Denver, CO). pp. 28–33, April 1992.

    Google Scholar 

  35. T. Watari, H. Murano, “Packaging Technology for the NEC SX Supercomputer,” IEEE Trans CHMT., vol CHMT-8, no. 4, pp. 462–467, 1985.

    Google Scholar 

  36. B. E. Goblish, et al., The Reliability of EP/TAB Integrated Circuits,“ Proc. Internat. Elect. Packaging Conf, (Marlborough, MA), pp. 858–874, Sept. 1990.

    Google Scholar 

  37. L. M. Levinson, et al., “High Density Interconnects Using Laser Lithography,” Proc. Internat. Symp. Hybrid Microelect., (Seattle, WA), pp. 301–306, Oct. 1988.

    Google Scholar 

  38. D. C. Carey, L. Paradisio, “A Collaborative VHSIC Multichip Module Design Using Programmable Copper/Polyimide Interconnect,” Digest of Papers, Government Microcircuit Appl. Conf, (Las Vegas, NV), pp. 533–535, Nov. 1990.

    Google Scholar 

  39. R. Bruns, W. Chase, D. Frew, “Utilizing Three Dimensional Memory Packaging and Silicon-on-Silicon Technology for Next Generation Recording Devices,” Proc. Internat. Conf Multichip Modules, (Denver, CO), pp. 34–40, April 1992.

    Google Scholar 

  40. J. P. G. Bristow, et al., “Polymer Waveguide-Based Optical Backplane for Fine-Grained Computing,” Optical Interconnects in the COputer Environment, Bellingham WA: SPIE - Internat. Soc. for Optical Engineering, 1990, pp. 102–114.

    Google Scholar 

  41. R. C. Frye, Elect. Packaging Materials Sci. III, R. Jaccodine, K. A. Sindahl, eds., Pittsburgh, PA: Materials Research Society, vol. 108, pp. 27–38, 1988.

    Google Scholar 

Download references

Authors

Editor information

Daryl Ann Doane Paul D. Franzon

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jensen, R.J. (1993). Thin Film Multilayer Interconnection Technologies for Multichip Modules. In: Doane, D.A., Franzon, P.D. (eds) Multichip Module Technologies and Alternatives: The Basics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3100-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3100-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-01236-6

  • Online ISBN: 978-1-4615-3100-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics