Skip to main content
  • 89 Accesses

Abstract

Advances in silicon semiconductor processing and manufacturing technologies are allowing submicrometer scaling of semiconductor features, increasing both the transistor density and switching speed. The need to interconnect ever increasing numbers of transistors on the semiconductor chip has led to significant research and development in thin film multilayer technology. Current semiconductor chips may contain as many as four layers of metal interconnect. The issues addressed in the development of chip level multilayer interconnections include process compatibility, planarization, step coverage, build-in stress, and reliability [1]-[2]. Aluminum and aluminum alloys are used for interconnection metallization. A variety of glasses deposited by chemical vapor deposition (CVD) and spin-on techniques, and polyimides have been used as interlayer dielectrics. Complex processes have been developed to address planarization and step coverage issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Ong, H. Chu, and S. Chen, “Metal Planarization with an Excimer Laser,” Solid State Technol., vol.34, no.8, pp. 63–68, Aug. 1991.

    Google Scholar 

  2. A. Nagy and J. Helbert, “Planarized Inorganic Interlevel Dielectric for Multilevel Metallization—Part I,” Solid State Technol., vol. 34, no. 1, pp. 53, Jan. 1991.

    Google Scholar 

  3. A. Nagy and J. Helbert, “Planarized Inorganic Interlevel Dielectric for Multilevel Metallization—Part II,” Solid State Technol., vol. 34. no. 3, pp. 77–80, March 1991.

    Google Scholar 

  4. M. L. Buschbom, “Modelling Issues for VLSI Package Design,” Proc. of the Techn. Prog.: NEPCON West, (Anaheim CA), pp. 686–697, March 1989.

    Google Scholar 

  5. S. K. Tewksbury and L. A. Hornak, “Wafer Level System Integration: A Review,” IEEE Circuits and Devices Mag., vol. 5, no. 5, pp. 22–30, Sept. 1989.

    Article  Google Scholar 

  6. D. J. Bodendorf, K. T. Olsen, J. F. Trinko, J. R. Winnard, “Active Silicon Chip Carrier,” IBM Technical Disclosure Bulletin, vol. 15, no. 2, pp. 656–657, July 1972.

    Google Scholar 

  7. R. K. Spielberger et al., “Silicon-on-Silicon Packaging,” IEEE Trans. on Components, Hybrids, and Manufacturing Techn., vol. CHMT-7, no. 2, pp. 193–196, June 1984.

    Article  Google Scholar 

  8. T. Yamada et al., “Low Stress Design of Flip Chip Technology for Si on Si Multichip Modules,” Proc. of the Fifth Annual Internat. Elect. Packaging Conf, (Orlando FL), pp. 551–557, Oct. 1985.

    Google Scholar 

  9. R. L. Hubbard and G. Lehman-Lamer, “Very High Speed Multilayer Interconnect Using Photosensitive Polyimides,” Proc of the 1988 Internat. Symp. on Microelect., (Seattle WA), pp. 374–376, Oct. 1988.

    Google Scholar 

  10. S. E. Greer, “Low Expansivity Organic Substrate for Flip-Chip Bonding,” Proc. of the 28th Elect. Components Conf, (Anaheim CA), pp. 166–171, April 1978.

    Google Scholar 

  11. R. R. Tummala, H. R. Potts, and S. Ahmed, “Packaging Technology for IBM’s Latest Mainframe Computers (S/390/ES9000),” Proc. of the 41st Elect. Components and Techn. Conf, (Atlanta GA), pp. 682–687, May 1991.

    Google Scholar 

  12. T. R. Gheewala, “Packages for Ultra-High Speed GaAs IC’s,” Technical Digest of the 1984 GaAs IC Symp., (Boston MA), pp. 67–70, Oct. 1984.

    Google Scholar 

  13. S. Sriram, “Novel V-Groove Structures in Silicon,” SPIE Vol. 578, Integrated Optical Circuit Engineering II, pp. 88–94, 1985.

    Google Scholar 

  14. R. A. Soref and J. P. Lorenzo, “Silicon Guided-Wave Optics,” Solid State Techn., vol. 31, no.11, pp. 895–898, Nov. 1988.

    Google Scholar 

  15. J. T. Boyd et al., “Guided Wave Optical Structures Utilizing Silicon,” Optical Engineering, vol. 24, no. 2, pp. 230–234, March/April 1985.

    Article  Google Scholar 

  16. S. E. Schacham et al., “Waveguides as Interconnections for High Performance Packaging,” Proc. of the 9th Annual Internat. Elect. Packaging Conf, (San Diego CA), pp. 1003–1013, Sept. 1989.

    Google Scholar 

  17. R. Selvaraj, H. T. Lin, and J. F. McDonald, “Integrated Optical Waveguides in Polyimide for Wafer Scale Integration,” J. of Lightwave Techn., vol. 6, pp. 1034–1044, 1988.

    Article  Google Scholar 

  18. J. B. Angell, S. C. Terry, and P. W. Barth, “Silicon Micromechanical Devices,” Scientific Amer.,vol. 248, no. 4, pp. 44–55, April 1983.

    Article  Google Scholar 

  19. K. E. Bean, “Anisotropic Etching of Silicon,” IEEE Trans. on Electron Devices, vol. ED-25, no. 10, pp. 1185–1193, Oct. 1978.

    Article  Google Scholar 

  20. J. H. Atherton, “Sensor Signal Conditioning: An IC Designer’s Perspective,” SENSORS, vol. 8, no.11, pp. 23–30, Nov. 1991.

    MathSciNet  Google Scholar 

  21. A. Goyal et al., “Re-entrant Cavity Heat Sink Fabricated by Anisotropic Etching and Silicon Direct Wafer Bonding,” Proc. of the Eighth Annual Semi. Thermal Measurement and Management Symp., (Austin TX), pp. 25–29, Feb. 1992.

    Google Scholar 

  22. N. K. Phadke et al., “Re-entrant Cavity Surface Enhancements for Immersion Cooling of Silicon Multichip Packages,” Proc. of the Third IEEE/ASME Intersociety Conf. on Thermal Phenomena in Elect. Sys., (Austin TX), pp. 59–65, Feb. 1992.

    Google Scholar 

  23. M. J. Little et al., “A Three-Dimensional Computer for Image and Signal Processing,” Proc. of the IEEE 1985 Custom Integrated Circuits Conf, (Portland OR), pp. 119–123, May 1985.

    Google Scholar 

  24. M. W. Hartnett and E. J. Vardaman, “Worldwide MCM Status and Trends: Material Choices,” Proc. of the Technical Program: NEPCON West, (Anaheim CA), pp. 1111–1120, Feb. 1991.

    Google Scholar 

  25. A. Schiltz et al., “Lift Off Techniques of Packaging/ Processing Technologies for Multichip Modules,” Proc. of the Technical Prog.: NEPCON West, (Anaheim CA), pp. 975–983, March 1990.

    Google Scholar 

  26. H. Kroger et al., “Applications of Superconductors to Hybrid Electronics,” Proc. of the 1990 Internat. Symp. on Microelect., (Chicago IL), pp. 570–572, Oct. 1990.

    Google Scholar 

  27. L. Verdet, J. Reche, and G. Rabilloud, “The P’s and Q’s of PPQ,” Elect. Packaging and Prod., vol. 31, no. 1, pp. 58–61, Jan. 1991.

    Google Scholar 

  28. T. G. Tessier, G. M. Adema, and I. Turlik, “Polymer Dielectric Options for Thin Film Packaging Applications,” Proc. of the 39th Elect. Components Conf, (Houston TX), pp. 127–134, May 1989.

    Google Scholar 

  29. B. T. Merriman et al., “New Low Coefficient of thermal Expansion Polyimide for Inorganic Substrates,” Proc. of the 39th Elect. Components Conf, (Houston TX), pp. 155–159, May 1989.

    Google Scholar 

  30. D. Burdeaux et al., “Benzocyclobutene (BCB) Dielectrics for the Fabrication of High Density, Thin Film Multichip Modules,” J. of Elect. Materials, vol. 19, no. 12, pp. 1357–1366, Dec. 1990.

    Article  Google Scholar 

  31. T. Ohsaki et al., A Fine-Line Multilayer Substrate with Photo-Sensitive Polyimide Dielectric and Electroless Copper Plated Conductors,” Proc. of the IEEE Internat. Elect. Manufac. Techn. Symp., (Anaheim CA), pp. 178–183, 1987.

    Google Scholar 

  32. A. A. Bogdan, “An Electrically Programmable Silicon Circuit Board,” Proc. of BUSCON ‘87, pp. 9–14, April 1987.

    Google Scholar 

  33. K. L. Drake et al., “Equivalent Hermetic Packaging of High Density Multichip Modules Interconnect Substrate,” Proc. of the Technical Prog.: NEPCON West, (Anaheim CA), p. 840, Feb. 1991.

    Google Scholar 

  34. E. Sutcliffe, “Multichip Modules for High Performance,” Proc. of the Technical Prog.: NEPCON West, (Anaheim CA), pp. 824–831, Feb. 1991.

    Google Scholar 

  35. D. Carey, “A Program to Provide Quick Turnaround Delivery of Multichip Modules,” Proc. of the Technical Prog.: NEPCON West, (Anaheim CA), pp. 507–514, Feb. 1991.

    Google Scholar 

  36. C. J. Bartlett, J. M. Segelken, and N. A Teneketges, “Multichip Packaging Design for VLSI-Based Systems,” IEEE Trans. on Components, Hybrids, and Manufac. Techn., vol. CHMT-12, no. 4, pp. 647–653, Dec. 1987.

    Google Scholar 

  37. K. G. Heinen et al., “Multichip Assembly with Flipped Integrated Circuits,” Proc. of the 39th Elect. Components Conf, (Houston TX), pp. 672–680, May 1989.

    Google Scholar 

  38. J. K. Hagge, “Ultra Reliable HWSI with Aluminum Nitride Packaging,” Proc. of the Technical Prog.: NEPCON West, (Anaheim CA), pp. 1271–1283, Feb. 1989.

    Google Scholar 

  39. J. K. Hagge, “State-of-the-Art Multichip Modules for Avionics,” Internat. Symp. on Advances in Interconnects and Packaging, (Boston MA), SPIE/OPTCON-90, pp. 175–194, Nov. 1990.

    Google Scholar 

  40. J. K. Hagge, “Ultra-Reliable Pachaging for Silicon-on-Silicon WSI,” Proc. 38th Electr. Comp. Conf, (Los Angeles CA), pp. 282–292, May 1988.

    Google Scholar 

  41. T. Horton, “MCM Driving Forces, Applications, and Future Directions,” Proc. of the Technical Prog.: NEPCON West, (Anaheim CA), pp. 487–494, Feb. 1991.

    Google Scholar 

  42. B. McWilliams, “Comparison of Multichip Interconnection Technologies,” Proc. of the 11th Annual Internat. Elect. Packaging Conf, (San Diego CA), pp. 63–68, Aug. 1991.

    Google Scholar 

  43. J. C. Demmin, “Thermal Modeling of Multi-Chip Modules,” Proc. of the Technical Prog.: NEPCON West, (Anaheim CA), pp. 1145–1154, Feb. 1991.

    Google Scholar 

Download references

Authors

Editor information

Daryl Ann Doane Paul D. Franzon

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, R.W. (1993). Silicon-Based Multichip Modules. In: Doane, D.A., Franzon, P.D. (eds) Multichip Module Technologies and Alternatives: The Basics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3100-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3100-5_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-442-01236-6

  • Online ISBN: 978-1-4615-3100-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics