Skip to main content

Growth factors and development of coronary collaterals

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 147))

Abstract

The existence of coronary collaterals in the heart and their potential role in salvaging the ischemic myocardium is well described. In experimental animals as well as in humans during ischemic heart disease, slowly developing occlusion of a large epicardial coronary artery leads to the formation of a collateral circulation [1,3,4]. This compensatory growth (collateralization) is able to prevent myocardial infarction and these alternate routes of blood supply to the jeopardized myocardium arise both from preformed and newly formed collateral vessels [1)] Over the past 25 years, studies from our group have shown that in the pig heart, collaterals are tiny vascular channels of < 20 μm in diameter and that they develop in response to ischemia usually in the sub-endocardial regions as a network interconnected with one another as well as with epicardial coronary arteries and their branches [1–4]. In canine heart, epicardial vessels increase from an initial diameter of 40 μm to an average diameter of 80 μm [1,4,5,31]. Hence, it can be stated that progressively slow coronary artery stenosis favours the induction of blood vessel growth, a phenomenon called angiogenesis. Angiogenesis in the heart could be of two types; sprouting angiogenesis, when collateral vessels develop from an existing capillary and non-sprouting angiogenesis, when collateral vessels develop as a tubular structure from pre-existing arterioles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaper W. The Collateral Circulation of the heart. Amsterdam, North Holland Publishing Co 1971.

    Google Scholar 

  2. Kass RW, Kotier MN, Yazdanfar S. Stimulation of coronary collateral growth: Current developments in angiogenesis and future clinical applications. Am Heart J 1992; 123: 486–496

    Article  PubMed  CAS  Google Scholar 

  3. Görge G, Schmidt T, Ito BR, Pantely GA, Schaper W. Microvascular and collateral adaptation in swine hearts following progressive coronary artery stenosis. Basic Res Cardiol 1989; 84: 524–535.

    Article  PubMed  Google Scholar 

  4. Schaper W, Bernotat-Danielowski S, Nienaber C, Schaper J. In: Fozzard HA et al. editors. Collateral Circulation. The Heart and Cardiovascular System (Second edition) Raven Press, Ltd., New York, 1992; 1427–1463.

    Google Scholar 

  5. Schaper W, Jageneau A, Xhonneux R. Development of collateral circulation in the pig and the dog heart. Cardiologia 1967; 51: 321–335.

    Article  PubMed  CAS  Google Scholar 

  6. Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992; 267: 10931–10934.

    PubMed  CAS  Google Scholar 

  7. Klagsbrun M, D’Amore PA. Regulators of Angiogenesis. Ann Rev. Physiol 1991; 53: 217–239.

    Article  CAS  Google Scholar 

  8. D’Amore PA, Thompson RW. Mechanism of angiogenesis. Ann Rev Physiol 1987; 49: 453–464.

    Article  Google Scholar 

  9. Rifkin DB, Gross Jl, Moscatelli D, Jaffe E. Pathobiology of the endothelial cells Academic press. New York. 1982, pp 191–197

    Google Scholar 

  10. Montesano R. Regulation of angiogenesis in vitro Eur J Clin Invest 1992; 22, 504–515.

    CAS  Google Scholar 

  11. Folkman J, Klagsbrun M. Angiogenic Factors. Science 1987, 235: 442–447.

    Article  PubMed  CAS  Google Scholar 

  12. Sharma HS, Kandolf R, Markert T, Schaper W. Localization of endothelial cell growth factor-a mRNA in the pig heart during collateralization. Circulation 1989; 80: II–453.

    Google Scholar 

  13. Sharma HS, Wünsch M, Schott RJ, Kandolf R, Schaper W. Angiogenic growth factors possibly involved in coronary collateral growth. J Mol Cell Cardiol (Supplement V) 1991; 23: S 18

    Google Scholar 

  14. Sharma HS, Sassen L, Verdouw PD, Schaper W Myocardial ischemia and reperfusion leads to the induced expression of a potent mitogen vascular endothelial growth factor. Eur Heart J 1992; 13: 249

    Google Scholar 

  15. Schaper W, De Brabander M, Lewi P. DNA synthesis and mitosis in coronary collateral vessel of the dog Circ Res 1971; 28: 671–679

    CAS  Google Scholar 

  16. Kumar S, Shahabuddin S, Haboubi N, West D, Arnold F, Carr T. Angiogenesis factor from human myocardial infarcts Lancet 1983; 2: 364–368.

    CAS  Google Scholar 

  17. Quinckler W, Maasberg M, Bernotat-Danielowski S, Luthe N, Sharma HS, Schaper W. Isolation of heparin-binding growth factors from bovine, porcine and canine hearts. Eur J Biochem 1989; 181: 67–73.

    Article  Google Scholar 

  18. Kardami E, Fandrich RR. Basic fibroblast growth in atria and ventricles of the vertebrate heart. J Cell Biol 1989; 109: 1865–1875

    Article  PubMed  CAS  Google Scholar 

  19. Risau W, Ekblom P. Production of heparin-binding angiogenesis factor by the embryonic kideney. J Cell Biol 1986, 103: 1101–1107

    Article  PubMed  CAS  Google Scholar 

  20. Casscells W, Spier E, Sasse J, Klagsburn M, Allen P, Lee M, Calvo B, Chiba M, Haggroth L, Folkman J, Epstein S. Isolation, characterization and localization of heparin-binding growth factors in the hearts. J Clin Inv 1990; 85: 433–441.

    Article  CAS  Google Scholar 

  21. Sasaki H, Hoshi H, Hong Y, Suzuki T, Kato T, Sasaki H, Saito M, Youki H, Karube K, Kono S, Onodera M, Saito T, Aoyagi S. Purification of acidic fibroblast growth factor from bovine heart and its localization in the cardiac myocytes. J Biol Chem 1989; 264: 17606–17612.

    PubMed  CAS  Google Scholar 

  22. Wünsch M, Sharma HS, Markert T, Bernotal-Danielowski S, Schott RJ, Kremer P, Bleese N, Schaper W. In situ localization of transforming growth factor-ßl in the porcine heart: Enhanced expression after chronic coronary artery constriction. J Mol Cell Cardiol 1991; 23: 1051–1062.

    Article  PubMed  Google Scholar 

  23. Thompson NL, Basoberry F, Spier EH, Casscells W, Fevvans VJ, Flanders KC, Kondaiah P, Geiser AG, Sporn MB. TGF-ßl in acute myocardial infarction in rats. Growth Factor 1988; 1: 91–99.

    Article  CAS  Google Scholar 

  24. Eghbali M. Cellular origin and distribution of transforming growth factor ß in the normal rat myocardium. Cell Tissue Res 1989; 256: 553–558.

    Article  PubMed  CAS  Google Scholar 

  25. Sharma HS, Wünsch M, Schmidt M, Schott RJ, Kandolf R, Schaper W. In: eds. Steiner, Weisz, Angiogenesis, Key Principles-Science-Technology-Medicine, Langer, 1992; 255–260.

    Google Scholar 

  26. Schaper W, Goerge G, Winkler B, Schaper J. The collateral circulation of the heart. Prog Cardiovasc Dis 1988; 31: 57–77.

    Article  PubMed  CAS  Google Scholar 

  27. Litvak J, Siderides E, Vineberg AM. The experimental production of coronary artery insufficiency and occlusion. Am Heart J 1957; 53: 505–518.

    Article  PubMed  CAS  Google Scholar 

  28. Mohri M, Tomoike H, Noma M, Inone T, Hisana K, Nakamura M. Duration of ischemia is vital for collateral development. Circ Res 1988; 64: 287–296.

    Article  Google Scholar 

  29. White FC, Roth DM, Bloor CM. Coronary collateral reserve during exercise induced ischemia in swine. Basic Res Cardiol 1989; 84: 42–54.

    Article  PubMed  CAS  Google Scholar 

  30. Chilian WM, Mass HJ, Williams SE, Layne SM, Smith ES, Schael KW. Microvascular occlusions promote coronary collateral growth. Am J Physiol 1990; 258: H1103–H1110.

    PubMed  CAS  Google Scholar 

  31. Pasyk S, Schaper W, Schaper J, Pasyk K, Miskiewicz G, Steinscifer B. DNA synthesis in coronary collaterals after coronary artery occlusion in concious dog. Am J Physiol 1982; 242: H1031–H1037.

    PubMed  CAS  Google Scholar 

  32. Sharma HS, Schaper W. The role of growth factors during development of a collateral circulation in the porcine heart. In: Schaper W, Schaper J. editors, Collateral Circulation. Kluwer Academic Publishers, USA 1992; 123–147.

    Google Scholar 

  33. Mohri M, Zimmermann R, Bernotat-Danielowski S, Sack S, Schwarz ER, Araas M, Schaper J, Schaper W. Coronary microembolization increases frowth factor expression in the porcine hearts. Circulation 1991; 84(Supplement II): 11–395.

    Google Scholar 

  34. Mohri M, Sack S, Schwarz ER, Arras M, Zimmermann R, Bernotat-Danielowski S, Schaper J, Schaper W. Selective coronary microembolization increses acidic fibroblast growth factor in the ischemic porcine myocardium. Circ Res 1992; (in press).

    Google Scholar 

  35. Wong DTW. Histone gene (H3) expression in chemically transformed oral keratinocytes. Exp Mol Path 1988; 49: 206–214.

    Article  CAS  Google Scholar 

  36. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306–1309.

    Article  PubMed  CAS  Google Scholar 

  37. Keck PJ, Hauser SD, Kvivi G, Sanzo K, Warren T, Feder J, Connolly DT. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989; 246:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  38. Ferrara N, Houck KA, Jakeman LB, Winer J, Leung DW. The vascular endothelial growth family of polypeptides. J Cell Biochem 1991; 47: 211–218.

    Article  PubMed  CAS  Google Scholar 

  39. Tischer E, Gospodawowicz D, Mitchall R, Silva M, Schilling J, Lau K, Crisp T, Fiddes JC, Abraham JA. Vascular endothelial growth factor: A new member of the platelet derived growth factor gene family. Biochem Biophys Res Comm 1989; 165: 1198–1206

    Article  PubMed  CAS  Google Scholar 

  40. Breier G, Albrecht U, Sterrer S, Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 1992; 114: 521–532.

    PubMed  CAS  Google Scholar 

  41. Phillips HS, Hains J, Leung DW, Ferrara N. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinol 1990; 127: 965–967.

    Article  CAS  Google Scholar 

  42. Sharma HS, Schaper W. Adult porcine heart is a rich source of the polypeptide mitogen vascular endothelial growth factor-Personal Communication.

    Google Scholar 

  43. Pepper MS, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Comm 1991; 181: 902–906.

    Article  PubMed  CAS  Google Scholar 

  44. Burgess WH, Maciag, T. The heparin binding fibroblast growth factor family proteins. Ann Rev Biochem 1989; 58: 575–606.

    Article  PubMed  CAS  Google Scholar 

  45. Gospodarowicz D, Ferrara N, Schweigerer L, Neufeld G. Structural characterization and biological fuctions of fibroblast growth factor. Endocrine Rev 1987; 8: 95–109.

    Article  CAS  Google Scholar 

  46. Moscatelli D. High and low affinity binding sites of basic fibroblast growth factor on cultured cells: Absence of a role for low affinity binding in the stimulation of plasminogen activator by bovine capillary endothelial cells. J Cell Physiol 1987; 131: 123–130.

    Article  PubMed  CAS  Google Scholar 

  47. Vlodavsky L, Friendman R, Sulivan R, Sasse J, Klagsbrun M. Aortic endothelial cells synthesize basic fibroblast growth factor which remain cell associated and platelet derived growth factor like protein which is secreted. J Cell Physiol 1987; 131: 402–408.

    Article  PubMed  CAS  Google Scholar 

  48. Delli-Bovi P, Curatola AM, Kern FG, Greco A, Ittmann M, Basilico C. An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is member of the FGF family. Cell 1987; 50: 729–730.

    Article  PubMed  CAS  Google Scholar 

  49. Dickson C, Smith R, Brookes S, Peters G. Proviral insertions within the int-2 can generate multiple anomalous transcripts but leave the protein coding domain intact. J Virol 1990; 64: 784–793.

    PubMed  CAS  Google Scholar 

  50. Schnürch H, Risau W. Differentiating and mature neurons express the acidic fibroblast growth factor gene during chick neural development. Development 1991; 111: 1143–1154.

    PubMed  Google Scholar 

  51. Schmidt M, Sharma HS, Schaper W. Amplification and sequencing of a mRNA encoding acidic fibroblast growth factor from porcineheart. Biochem Biophys Res Comm 1991; 180: 853–859.

    Article  PubMed  CAS  Google Scholar 

  52. Schaper W. Development and role of coronary collaterals. Trends Cardiovas Med 1991; 1: 256–261.

    Article  CAS  Google Scholar 

  53. Bernotat-Danielowski S, Schott R, Sharma H, Kremer P, Schaper W. Fibroblast growth factor (FGF), an endothelial mitogen, is localized in cardiomyocytes of the ischemie collaterlized pig heart. Circulation 1990; 82: III–377

    Google Scholar 

  54. Weiner HL, Swain J L. Acidic fibroblast growth mRNA expression by cardiac myocytes in culture and the protein is localized to the extra cellular matrix. Proc Natl Acad Sci USA 1989; 86: 2683–2687.

    Article  PubMed  CAS  Google Scholar 

  55. Sporn MB, Robert AB. In: Sporn MB, Roberts AB. editors. Peptide growth factors and their receptors I. Springer Verlag, New York 1990; 419–472,.

    Google Scholar 

  56. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wake-field LM, Heine UI, Liotta LA, Falanga V, Kehvl JH, Fauci AS. TGF-ß: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83: 4167–171.

    Article  PubMed  CAS  Google Scholar 

  57. Mustoe TA, Pierce GF, Thopson A, Gramates P, Sporn MB, Deul TF. Accelerated healing of inscisional wounds in rats induced by TGF-ßl. Science 1987; 237: 1333–1335.

    Article  PubMed  CAS  Google Scholar 

  58. Lefer AM. Mechanism of the protective effects of transforming growth factor-ß in reperfusion injury. Biochem Pharmacol 1991; 42: 1323–1327.

    Article  PubMed  CAS  Google Scholar 

  59. Casscells W, Bazoberry F, Speir E, Thompson N, Flanders K, Kondaiah P, Ferrans VJ, Epstein SE, Sporn M. Transforming growth factor ßl in the normal heart and in myocardial infarction. Annals New York Acad Sci 1990; 593: 148–160.

    Article  CAS  Google Scholar 

  60. Schaper W, Sharma HS, Quinkler W, Marken T, Wünsch M, Schaper J. Molecular biologic concepts of coronary anastomoses. J Am Coll Cardiol 1990; 15: 513–518.

    Article  PubMed  CAS  Google Scholar 

  61. Derynck R, Rhee L. Sequence of the porcine TGF-ßl precursor. Nucleic Acid Res 1987; 15: 3187.

    Article  PubMed  CAS  Google Scholar 

  62. Sharma HS, Wünsch M, Brand T, Verdouw PD, Schaper W. Molecular biology of the coronary vascular and myocardial responses to ischemia. J Cardiovasc Pharmacol 1992; 20: S23–S31.

    PubMed  CAS  Google Scholar 

  63. Humbel RE. Insulin-like growth factors I and II. Eur J Biochem 1990; 190: 445–62.

    Article  PubMed  CAS  Google Scholar 

  64. Rechle MM, Nissley SP. The nature and regulation of the receptors for insulin-like growth factors. Ann Rev Physiol 1985; 47: 425–42.

    Article  Google Scholar 

  65. Brown AL, Graham DE, Nissley SP, Hill DJ, Strain AJ, Rechler MM. Developmental regulation of insulin-like growth factor II mRNA in different rat tissues. J Biol Chem 1986; 261: 13144–13150.

    PubMed  CAS  Google Scholar 

  66. Johnson SE, Allen RE. The effects of bFGF, IGF-I, and TGF-ß on RMo skeletal muscle cell proliferation and differentiation. Exp Cell Res 1990; 187: 50–254.

    Google Scholar 

  67. Cercek B, Fishbein MC, Forrester JS, Helfant RH, Fagin JA. Induction of vascular insulin-like growth factor-I mRNA after ballon denudation precedes neointimal proliferation. Circulation 1989; 80: 11–453.

    Google Scholar 

  68. Heldin CH, Westermark B. Growth factors as transforming proteins. Eur J Biochem 1989; 184: 487–96.

    Article  PubMed  CAS  Google Scholar 

  69. Magri KA, Ewton DZ, Florini JR. The role of the IGFs in myogenic differentiation. In: Raizada MK, LeRoith D. Molecular Biology and physiology of insulin and insulin-like growth factors. Plenum Press, New York 1991; 57–76.

    Chapter  Google Scholar 

  70. Lowe WL, Roberts CT, Lasky SR, LeRoith D. Differential expression of alternative 5′ untranslated regions in mRNAs encoding rat insulin-like growth factor I. Proc Natl Acad Sci USA 1987; 84: 8946–8950.

    Article  PubMed  CAS  Google Scholar 

  71. Kupfer JM, Rubin SA. Differential regulation of insulin-like growth factor I by growth hormone and thyroid hormone in the heart of juvenile hypophysecto-mized rats. J. Mol. Cell Cardiol. 1992; 24: 631–639.

    Article  PubMed  CAS  Google Scholar 

  72. Zimmermann R, Kluge A, Mohri M, Sack S, Verdouw PD, Sharma HS, Schaper W. Expression of interleukins and growth factors in ischemic pig heart. J Mol Cell Cardiol 1992; 24(Suppl. I): 233.

    Google Scholar 

  73. Beutler B, Cerami A. Cachetin and tumor necrosis factor as two sides of the same biological coin. Nature 1986; 320: 584–588.

    Article  PubMed  CAS  Google Scholar 

  74. Sherry B, Cerami A. Cachetin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J Cell Biol 1988; 107: 1269–1277.

    Article  PubMed  CAS  Google Scholar 

  75. Lord PCW, Wilmoth LMG, Mizel SB, McCall CE. Expression of interleukin-lα and ß genes by human blood polymorphonuclear leukocytes. J Clin Invest 1991; 87: 1312–1321.

    Article  PubMed  CAS  Google Scholar 

  76. Dinarello CA. Biology of interleukin 1. FASEB J 1988; 2: 108–115

    PubMed  CAS  Google Scholar 

  77. Akira S, Hirano T, Taga T, Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). FASEB J 1990; 4: 2860–2867.

    PubMed  CAS  Google Scholar 

  78. Kilian PL, Kaffka KL, Stern AS, Woehle D, Benjamin WR Dechiara TM, Gubler U, Farrar JJ, Mizel SB, Lomedico PT. Interleukin-la and interleukin-lß bind to the same receptor on T cells. J Immunol 1986; 136: 4509–4514.

    PubMed  CAS  Google Scholar 

  79. Whicher JT, Evans SW. Cytokines in disease. Clin Chem 1990; 36/7, 1269–1281.

    Google Scholar 

  80. Rubartelli A, Cozzolino F, Tali M, Sitia R. A novel secretory pathway for interleukin-lß, a protein lacking a signal sequence. EMBO J 1990; 9: 1503–1510.

    PubMed  CAS  Google Scholar 

  81. Trinkle LA, Beasley D, Moreland RS. Interleukin-lß alters actin expression and inhibits contraction of rat thoracic aorta. Am J Phys 1992; 262: C828–833.

    CAS  Google Scholar 

  82. Okusawa S, Gelfand JA, Ikejima T, Connoly RJ, Dinarello CA. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest 1988; 81: 1162–1172.

    Article  PubMed  CAS  Google Scholar 

  83. Loppnow H, Libby P. Proliferating interleukin 1 activated human vascular smooth muscle cells secrete copius interleukin 6. J Clin Invest 1990; 85: 731–738.

    Article  PubMed  CAS  Google Scholar 

  84. Han RO, Ray PE, Baughman KL, Feldman AM. Detection of interleukin and interleukin-receptor mRNA in human heart by polymerase chain reaction. Biochem Biophys Res Comm 1991; 181: 520–523.

    Article  PubMed  CAS  Google Scholar 

  85. Bendtzen K. Interleukin 1, interleukin 6 and tumor necrosis factor in infection, inflammation and immunity. Immunol Lett 1988; 19: 183–192.

    Article  PubMed  CAS  Google Scholar 

  86. Ikeda U, Ikeda M, Seino Y, Takahashi M, Kano S, Shimada K. Interleukin-6 gene transcripts are expressed in atherosclerotic lesions of genetically hyperlipidemic rabbits. Atherosclerosis 1992; 92: 213–218.

    Article  PubMed  CAS  Google Scholar 

  87. Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A, Tsunasawa S, Sakiyama F, Matsui, Takahara Y, Tanigushi T, Kishimoto T. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 1986; 324: 73–76.

    Article  PubMed  CAS  Google Scholar 

  88. Baumann H, Richards C, Gauldie J. Interaction between hepatocyte-stimulating factors, interleukin-1 and glucocorticoids for regulation of acute phase proteins in human hepatoma (Hep-G2) cells. J Immunol 1988; 139: 4122 128.

    Google Scholar 

  89. Geiger T, Andus T, Klapproth J, Hirano T, Kishimoto T, Heinrich PC. Induction of acute phase-proteins by interleukin 6 in vivo. Eur J Immunol 1988; 18: 717–721.

    Article  PubMed  CAS  Google Scholar 

  90. Morimoto S, Nabata T, Koh E, Shiraishi T, Fukuo K, Imanaka S, Kitano S, Miyahita Y, Ogihara T. Interleukin-6 stimulates proliferation of cultured vascular smooth muscle cells independently of interleukin-lß. J Cardiovascular Pharmacology 1991; 17(Suppl. 2): S117–S118.

    Article  Google Scholar 

  91. Richards CD, Saklatvala J. Molecular cloning and sequence of porcine interleukin 6 cDNA and expression of mRNA in synovial fibroblasts in vitro. Cytokine 1991; 3: 269–276.

    Article  PubMed  CAS  Google Scholar 

  92. Ikeda U, Ohkawa F, Seino Y, Yamamoto K, Hidaka Y, Kasahara T, Kawai T, Shimada K. Serum interleukin 6 levels become elevated in acute myocardial infarction. J Mol Cell Cardiol 1992; 24: 579–584.

    Article  PubMed  CAS  Google Scholar 

  93. Berse B, Brown LF, Van De Water L, Dvorak HF, Senger DR. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 1992; 3: 211–220.

    PubMed  CAS  Google Scholar 

  94. Speir E, Tanner V, Gonzalez AM, Farris J, Baird A, Casscells W. Acidic and basic fibroblast growth factors in the adult rat heart myocytes: Localization, regulation in culture, and effects on DNA synthesis. Circ Res 1992; 71: 251–259.

    Article  PubMed  CAS  Google Scholar 

  95. Schneiderman J, Loskutoff DJ. Plasmin activator inhibitor. Trends Cardiovas Med 1991; 1(3): 99–102.

    Article  CAS  Google Scholar 

  96. Vassalli J-D, Sappino A-P, Belin D. The plasminogen activator / plasmin system. J Clin Invest 1991; 88: 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  97. Sharma HS, Mohri M, Sack S, Schaper W. Induction of plasminogen activator inhibitor-1 (PAI-1) expression during microembolization. J Mol Cell Cardiol 1992; 24: S.233.

    Google Scholar 

  98. Mohri M, Sack S, Zimmermann R, Arras M, Schaper J, Schaper W. Tissue-and urokinase-type plasminogen activator (tPA and uPA) and type-1 PA inhibitor after coronary microembolization in the pig heart. J Cell Mol Cardiol 1992; 24: (Supplement I) S.49.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharma, H.S., Zimmerman, R. (1993). Growth factors and development of coronary collaterals. In: Cummins, P. (eds) Growth Factors and the Cardiovascular System. Developments in Cardiovascular Medicine, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3098-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3098-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6354-5

  • Online ISBN: 978-1-4615-3098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics