Skip to main content

Basic fibroblast growth factor in cardiac myocytes: expression and effects

  • Chapter
Book cover Growth Factors and the Cardiovascular System

Abstract

Ventricular myocytes of the adult mammalian myocardium are considered essentially incapable of regeneration. These cells cease dividing soon after birth and subsequent cardiac growth is brought about by increases in cellular size (hypertrophy) rather than cell number [1]. Following irreversible injury and death of cardiomyocytes, caused by a variety of factors such as ischemia, excess catecholamines or genetic defects, necrotic muscle becomes replaced by scar tissue. The remaining myocardium hypertrophies to meet the need for extra work but beyond a certain potential for adaptation, cardiac failure ensues. There is some evidence that ventricular myocytes may not have lost their proliferative potential irreversibly, since they can be stimulated to synthesize DNA in culture [2] and are apparently capable of a hyperplastic response in hypertrophie or ageing hearts [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zak R: Factors controlling cardiac growth. In: Zak R, editor. Growth of the Heart in Health and Disease. Raven Press, New York, NY. 1984; 165–185.

    Google Scholar 

  2. Claycomb WC, Moses RL. Growth factors and TPA stimulate DNA synthesis and alter the morphology of cultured terminally differentiated adult rat cardiac muscle cells. Devel Biol 1988; 127: 257–265.

    Article  CAS  Google Scholar 

  3. Anversa P, Fitzpatrick D, Argani S, Capasso JM. Myocyte mitotic division in the aging mammalian rat heart. Circ Res 1991; 69: 1159–1164.

    Article  PubMed  CAS  Google Scholar 

  4. Parker TG, Schneider MD. Growth factors, protooncogenes, and plasticity of the cardiac phenotype. Ann Rev Physiol 1991; 53: 179–200.

    Article  CAS  Google Scholar 

  5. Rifkin DB, Moscatelli D. Recent developments in the cell biology of basic fibroblast growth factor. J Cell Biol 1989; 109: 1–6.

    Article  PubMed  CAS  Google Scholar 

  6. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Ann Rev Biochem 1989; 58: 575–606.

    Article  PubMed  CAS  Google Scholar 

  7. Coulier F, Ollendorff V, Marics I, Rosnet O, Batoz M, Planche J, Marchette S, Pebusque M-J, deLapeyriere O, Birnbaum D. The FGF6 gene within the FGF multigene family. Ann NY Acad Sci 1991; 638: 53–62.

    Article  PubMed  CAS  Google Scholar 

  8. Esch F, Baird A, Ling N, Ueno N, Hill L, Klepper R, Gospodarowicz D, Bohlen P, Guillemin R. Primary Structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the ami no-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 1985; 82: 6507–6511.

    Article  PubMed  CAS  Google Scholar 

  9. Muthukrishnan L, Warder E, McNeil PL. Basic fibroblast growth factor is efficiently released from a cytosolic storage site through plasma membrane disruptions of endothelial cells. J Cell Physiol 1991; 48: 1–16.

    Article  Google Scholar 

  10. Lindner V, Majack RA, Reidy MA. Basic fibroblast growth factor stimulates endothelial regrowth and proliferation in denuded arteries. J Clin Invest Year 1990; 85, 2004–2008.

    Article  CAS  Google Scholar 

  11. Hebda PA, Klingbeil CK, Abraham JA, Fiddes JC. Basic fibroblast growth factor stimulation of epidermal wound healing in pigs. J Invest Dermatol 1990; 95: 626–631.

    Article  PubMed  CAS  Google Scholar 

  12. Cuevas P, Burgos J, Baird A. Basic fibroblast growth factor promotes cartilage repair in vivo. Biochem Biophys Res Commun 1988; 156: 611–618.

    Article  PubMed  CAS  Google Scholar 

  13. Morisson RS, Sharma A, de Velis J, Bradshaw RA. Basic fibroblast growth factor suppports the survival of cerebral cortical neurons in primary culture. Proc Natl Acad Sci USA 1986; 83: 7537–7541.

    Article  Google Scholar 

  14. Kardami E. Stimulation and inhibition of cardiac myocyte proliferation in vitro. Mol Cell Biochem 1990; 92: 124–134.

    Article  Google Scholar 

  15. Kardami E, Fandrich RR. Heparin-binding growth factors in cardiac compartments. In: Cell and Molecular Biology of Muscle Development, UCLA Symposia Series, Alan R Liss, Inc. New York, 1989; 315–325.

    Google Scholar 

  16. Roberts AB, Sporn MB. The transforming growth factor betas. In: Sporn M, Roberts AB, editors. Peptide Growth Factors and Their Receptors. Heidelberg: Springer-Verlag 1990; 421–472.

    Google Scholar 

  17. Thomson NL, Bazoberry F, Speir E, Casscells W, Ferrans VJ, Flanders K, Kondaiah P, Geiser AG, Sporn MB. Transforming growth factor beta-1 in acute myocardial infarction in rats. Growth Factors 1988; 1: 91–99.

    Article  Google Scholar 

  18. Padua RR, Kardami E. Increased basic fibroblast growth factor accumulation and distinct patterns of localization in isoproterenol-induced cardiomyocyte injury. 1992 (Submitted).

    Google Scholar 

  19. Padua RR, Doble BW, Kardami E. Basic fibroblast growth factor in development and after isoproterenol-induced injury in the rat heart. J Mol Cell Cardiol 1991; 23(suppl.III): S90.

    Article  Google Scholar 

  20. Mahdavi V, Izumo S, Nadal-Ginard B. Developmental and hormonal regulation of sarcomeric myosin heavy chain gene family Circ Res 1987; 60: 804–814.

    CAS  Google Scholar 

  21. Dubois JD, Dussault JH. Ontogenesis of thyroid function in the neonatal rat. Thyroxine (T4) and triiodothyronine (T3) production. Endocrinology 1977; 101: 435–441.

    CAS  Google Scholar 

  22. Akiyama SK, Yamada KM. Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin. J Biol Chem 1985; 260: 10402–10405.

    PubMed  CAS  Google Scholar 

  23. Janero DR, Hreniuk D, Sharif HM. Hydrogen peroxide-induced oxidative stress to the mammalian heart-muscle cell (cardiomyocyte): Lethal peroxidative membrane injury. J Cell Physiol 1991; 249: 347–364.

    Article  Google Scholar 

  24. Thomson SA. The disulfide structure of bovine pituitary basic fibroblast growth factor. J Biol Chem 1992; 267: 2269–2273.

    Google Scholar 

  25. Eckenstein FP, Shipley GD, Nishi R. Acidic and basic fibroblast growth factors in the nervous system: distribution and differential alteration of levels after injury of central versus peripheral nerve. J Neurosci 1991; 11: 412–419.

    PubMed  CAS  Google Scholar 

  26. Kardami E, Fandrich RR. Basic fibroblast growth factor in atria and ventricles of the vertebrate heart. J Cell Biol 1989; 109: 1865–1875.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson J, Liu L, Kardami E. Distinctive basic fibrolast growth factor distribution in regenerating and degenerating dystrophic (mdx) striated muscle. Dev Biol 1991; 147: 96–109.

    Article  PubMed  CAS  Google Scholar 

  28. Kardami E, Murphy L, Liu L, Padua RR, Fandrich RR. Characterization of two preparations of immunoglobulins to basic fibroblast growth factor which exhibit distinct patterns of localization. Growth Factors 1990; 4: 69–80.

    Article  PubMed  CAS  Google Scholar 

  29. Kardami E, Stoski RM, Doble BW, Yamamoto T, Herzberg EL, Nagy JI. Biochemical and ultrastructural evidence for the association of basic fibroblast growth factor with cardiac gap junctions. J Biol Chem 1991; 266: 19551–19558.

    PubMed  CAS  Google Scholar 

  30. Kardami E, Liu L, Doble BW. Basic fibroblast growth factor in cultured cardiac myocytes. Ann NY Acad Sci 1991; 638: 244–255.

    Article  PubMed  CAS  Google Scholar 

  31. Doble BW, Fandrich RR, Liu L, Kardami E. Calcium protects pituitary basic FGF from proteolysis by copurifying proteases. Biochem Biophys Res Commun 1990; 173: 1116–1122.

    Article  PubMed  CAS  Google Scholar 

  32. Brigstock DR, Sasse J, Klagsbrun M. Subcellular distribution of basic fibroblast growth factor in human hepatoma cells. Growth Factors 1991; 4: 189–196.

    Article  PubMed  CAS  Google Scholar 

  33. Yamamoto T, Kardami E, Nagy JI. Basic fibroblast growth factor in rat brain: localization to glial gap junctions correlates with connexin 43 distribution. Brain Res 1991; 554: 336–343.

    Article  PubMed  CAS  Google Scholar 

  34. Eghbali B, Kessler JA, Reid LM, Roy C, Spray DC. Involvement of gap junctions in tumorigenesis: Transfection of tumor cells with connexin 32 cDNA retards growth in vivo. Proc Natl Acad Sci USA 1991; 88: 10701–10705.

    Article  PubMed  CAS  Google Scholar 

  35. Rumyanchev PP. Interrelations of the proliferation and differentiation processes during cardiac myogenesis and regeneration. Int Rev Cytol 1977; 51:187–273.

    Article  Google Scholar 

  36. Kardami E, Spector D, Strohman RC. Myogenic growth factor present in skeletal muscle is purified by heparin affinity chromatography. Proc Natl Acad Sci USA 1985; 82: 8044–8047.

    Article  PubMed  CAS  Google Scholar 

  37. Liu L, Doble BW, Kardami E. Perinatal phenotype and hypothyroidism are associated with elevated levels of basic fibroblast growth factor (bFGF) in cardiac ventricles. Submitted.

    Google Scholar 

  38. Liu L, Doble BW, Fandrich RR, Kardami E. Hypothyroidism favours tissue-specific accumulation of high molecular weight basic fibroblast growth factor. J Cell Biol 1991; 115: 417a.

    Google Scholar 

  39. Amalric F, Baldin V, Bosc-Bierne I, Bugler B, Gouderc B, Guyader M, Patry V, Prats H, Roman AM, Bouche G. Nuclear translocation of basic fibroblast growth factor. Ann NY Acad Sci 1991; 638: 127–138.

    Article  PubMed  CAS  Google Scholar 

  40. Florkiewicz RZ, Sommer A. Human basic fibroblast growth factor gene encodes four polypeptides: Three initiate translation from non-AUG codon. Proc Natl Acad Sci USA 1989; 86: 3978–3981.

    Article  PubMed  CAS  Google Scholar 

  41. Powell PP, Klagsbrun M. Three forms of rat basic fibroblast growth factor are made from a single mRNA and localize to the nucleus. J Cell Physiol 1991; 148: 202–210.

    Article  PubMed  CAS  Google Scholar 

  42. Quarto N, Finger FP, Rifkin D. The NH2-terminal extension of high molecular weight bFGF is a nuclear targeting signal. J Cell Physiol 1991; 147: 311–318.

    Article  PubMed  CAS  Google Scholar 

  43. Pasumarthi SKB, Doble B, Liu L, Bock M, Kardami E, Cattini PA. (1992). Overexpression of basic fibroblast growth factor in cardiac myocytes is associated with nuclear fragmentation. FASEB J 1992; 6: A1078.

    Google Scholar 

  44. Cattini PA, Kardami E, Eberhardt NL. Effect of butyrate on thyroid hormone-mediated gene expression in rat pituitary tumour cells. Mol Cell Endocrinol 1988; 56: 263–270.

    Article  PubMed  CAS  Google Scholar 

  45. Rumyantsev P. Regenerative possibilities of the ventricular myocardium of adult mammals. In: Carlson BM, editor. Growth and hyperplasia of cardiac muscle cells. Cardiology Soviet Medical Reviews Supplement Series, Harwood Academic Publishers 1991; 3: 194–209.

    Google Scholar 

  46. Fishbein MC, Maclean D, Maroko PR. Experimental myocardial infarction in the rat. Qualitative and quantitative changes during pathologic evolution Am J Pathol 1977; 90: 57–70.

    Google Scholar 

  47. Wiersinga WM, Lie KI, Touber JL. Thyroid hormones in acute myocardial infarction. Clin Endocrinol 1981; 14: 367.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kardami, E. et al. (1993). Basic fibroblast growth factor in cardiac myocytes: expression and effects. In: Cummins, P. (eds) Growth Factors and the Cardiovascular System. Developments in Cardiovascular Medicine, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3098-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3098-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6354-5

  • Online ISBN: 978-1-4615-3098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics