Skip to main content

Growth factors and hypertension: Implications for a role in vascular remodelling

  • Chapter
  • 37 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 147))

Abstract

It is now well established that whatever the mechanisms that initiate elevation of blood pressure, a significant increase in arterial wall thickness is always observed in hypertension. This structural change in the arterial wall is considered to be an adaptive response to the elevated arterial blood pressure that plays a major role in the increase in vascular resistance responsible for chronic hypertension [1]. The structural remodelling of blood vessels in hypertension may involve important changes in the arterial intima, extracellular matrix and arterial media. Alterations in the shape of endothelial cells and an increase in their number may be observed, for example in the deoxycorticosterone acetate-salt (DOCA-salt) hypertension model, probably in response to the increase in arterial diameter [2]. The extracellular matrix expansion is mainly due to increases in arterial collagen, elastin and proteoglycans presumably as a result of stimulation of their production by smooth muscle cells. In the medial layer which normally constitutes most of the arterial wall thickness, the number of lamellar units (which are usually composed of smooth muscle cells surrounded by a dense network of connective tissue), remains relatively constant in large vessels. However, the increased wall thickness in hypertension is mainly due to the alteration in cellular mass that is accompanied by significant changes in connective tissue content including collagen, elastin proteoglycans and fibronectin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkow B. “Structural factor” in primary and secondary hypertension. Hypertension 1990; 16: 89–101.

    Article  PubMed  CAS  Google Scholar 

  2. Chobanian AV. Adaptative and maladive rsponses of the arterial wall to hypertension. Hypertension 1990; 15: 666–674.

    Article  PubMed  CAS  Google Scholar 

  3. Olivetti G, Ricci R, Anversa P. Hyperplasia of myocyte nuclei in long-term cardiac hypertrophy in rats. J Clin Inv 1987; 1818–1821.

    Google Scholar 

  4. Anversa P, Fitzpatrick D, Argani S, Capasso JM. Myocyte mitotic division in the aging mammalian rat heart. Circ Res 1991; 69: 1159–1164.

    Article  PubMed  CAS  Google Scholar 

  5. Owens GK, Schwartz SM. Alterations in vascular smooth muscle mass in the spontaneous hypertensive rat. Role in cellular hypertrophy, hyperploidy and hyperplasia. Circ Res 1982; 51: 280–289.

    Article  PubMed  CAS  Google Scholar 

  6. Leitschuh Mand Chobanian AV. Inhibition of nuclear polyploid by propranolol in aortic smooth muscle cells of hypertensive rats. Hypertension 1987; 9(supll III): III–106–III–109.

    Google Scholar 

  7. Owens GK, Reidy MA. Hyperplastic growth response of vascular smooth muscle cells following induction of acute hypertension in rats by aortic coarctation. Circ Res 1985; 57: 695–705.

    Article  PubMed  CAS  Google Scholar 

  8. Mulvany MJ, Baandrup U, Gundersen HJG. Evidence for hyperplasia in mesenteric resistance vessels of spontaneously hypertensive rats using a three-dimensional disector. Circ Res 1985; 57: 794–800.

    Article  PubMed  CAS  Google Scholar 

  9. Mulvany MJ, Hansen PK, Aalkjaer C. Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res 1978; 43: 854–864.

    Article  PubMed  CAS  Google Scholar 

  10. Bohr DF, Dominiczak AF, Webb RC. Pathophysiology of the vasculature in hypertension. Hypertension 1991; 18(suppl III): III–69–111–75.

    Google Scholar 

  11. El Amrani A-I.K, Lecarpentier Y, Riou B, Pourny JC. Lusitropic effect and modifications of contraction-relaxation coupling induced by alpha-adrenergic stimulation in rat left ventricular papillary muscle. J Mol Cell Cardiol 1989; 21: 669–680.

    Article  PubMed  Google Scholar 

  12. El Amrani A-I.K. Dual effect of angiotensinn II and load on intrinsic myocardial contractility. Heart failure 7 1991; 3: 97–103.

    Google Scholar 

  13. Moravec S-C, Reynolds EE, Stewart RW, Bond M. Endothelin is a positive inotropic agent in human and rat heart in vivo. Biochem Biophys Res Commun 1989; 159: 14–18.

    Article  PubMed  CAS  Google Scholar 

  14. El Amrani A-I.K, El Amrani F, Michel JB, Lecarpentier Y. Effets de l’angiotensine II sur la contractilite intrinseque du myocarde de cobaye. Arch Mal Coeur 1992; 85: 1587–1592.

    PubMed  Google Scholar 

  15. Vigne P, Ladzunski M, Frelin C. The inotropic effect of endothelin-1 on rat atria involves hydrolysis of phosphatidyl-inositol. FEBS Lett 1989; 249: 143–146.

    Article  PubMed  CAS  Google Scholar 

  16. Campbell-Boswell M, Robertson LA Jr. Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro. Exp Mol Pathol 1981; 35: 265–276.

    Article  PubMed  CAS  Google Scholar 

  17. Simpson P. Norepinephrine-stimulated hypertrophy of cultured rat myocardial cells is an alphal-adrenergic response. J Clin Invest 1983; 72: 732–738.

    Article  PubMed  CAS  Google Scholar 

  18. Komuro Y Kurihara H, Sugiyama T, Takaku F, Yazaki Y: Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett 1988; 238: 249–252.

    Article  PubMed  CAS  Google Scholar 

  19. Berridge MJ. Inositol lipids and cell proliferation. Biochim Biophys Acta 1987; 907: 33–45.

    PubMed  CAS  Google Scholar 

  20. Mulvagh SL, Roberts R, Schneider MD. Cellular oncogenes in cardiovascular disease. J Mol Cell Cardiol 1988; 20: 657–662.

    Article  PubMed  CAS  Google Scholar 

  21. Moalic JM, Bauters C, Himbert D, Swynghedauw B. Phenylephrine, vasopressine, and angiotensin II as determinants of protooncogenes and heat shock proteine genes expression in adult rat heart and aorta. J Hypertens 1989; 7: 195–201.

    Article  PubMed  CAS  Google Scholar 

  22. Naftilan AJ, Pratt RE, Dzau VJ. Induction od platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1419–1424.

    Article  PubMed  CAS  Google Scholar 

  23. Itoh H, Pratt RE, Dzau VJ. Antisense oligonucleotides complementary to PDGF mRNA attenuate angiotensin II-induced vascular hypertrophy (Abstract). Hypertension 1990: 16: 325.

    Google Scholar 

  24. Dzau VJ, Gibbons GH. Endothelium and growth factors in vascular remodelling of hypertension. Hypertension 1991, 18(suppl III): III–115–III–121.

    Google Scholar 

  25. Jonzon B, Nilsson J, Fredholm BB. Adenosine receptor-mediated changes in cyclic AMP production and DNA synthesis in cultured arterial smooth muscle cells. J Cell Physiol 1985; 124: 451–456.

    Article  PubMed  CAS  Google Scholar 

  26. Garg UC, Hassid A. Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–1777.

    Article  PubMed  CAS  Google Scholar 

  27. Lilscher TF, Vanhoutte PM, Raij L. Antihypertensive treatment normalizes decreased endothelium dependent relaxation in rats with salt-induced hypertension. Hypertension 1987; 9(suppl III): III–193–III–197.

    Google Scholar 

  28. Vanhoutte PM. Endothelium and control of vascular function. Hypertension 1989; 13: 658–667.

    Article  PubMed  CAS  Google Scholar 

  29. Panza JA, Quyyumi AA, Brush JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990; 323 22–27.

    Article  PubMed  CAS  Google Scholar 

  30. Clozel M, Kuhn H, Helft F. Effects of angiotensin converting enzyme inhibitors and of hydralazine on endothelial function in hypertensive rats. Hypertension 1990; 16: 532–540.

    Article  PubMed  CAS  Google Scholar 

  31. Sarzani R, Brecher P, Chobanian AV. Growth factor expression in aorta of normotensive and hypertensive rats. J Clin Inv 1989; 83: 1404–1408.

    Article  CAS  Google Scholar 

  32. Ignotz RA, Massague J. Transforming growth factor-ß stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 1986; 261: 4337–4345.

    PubMed  CAS  Google Scholar 

  33. Ignotz RA, Endo T, Massague. Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor. J Biol Chem 1987; 262: 6443–6446.

    PubMed  CAS  Google Scholar 

  34. Chen JK, Hoshi H, McKeehan WL. Transforming growth factor type ß specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc Natl Acad Sci USA 1987; 84: 5287–5291.

    Article  PubMed  CAS  Google Scholar 

  35. Penttinen RP, Kobayashi S, Bornstein P. Transforming growth factor ß increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc Natl Acad Sci USA 1988; 85:1105–1108.

    Article  PubMed  CAS  Google Scholar 

  36. Liu JM, Davidson JM. The elastogenic effect of recombinant transforming growth factor-beta on porcine aortic smooth muscle cells Biochem Biop-hys Res Commun 1988; 154: 895–901.

    CAS  Google Scholar 

  37. Perkett EA, Lyons RM, Moses HL, Brigham KL, Meyrick B. Transforming growth factor-ß activity in sheep lung lymph during the development of pulmonary hypertension. J Clin Invest 1990; 86: 1459–1464.

    Article  PubMed  CAS  Google Scholar 

  38. Majesky MW, Lindner V, Twardzik DR, Schwartz SM, Reidy MA. Production of transforming growth factor ßl during repair of arterial injury. J Clin Invest 1991; 88: 904–910.

    Article  PubMed  CAS  Google Scholar 

  39. Majack RA. Beta-type transforming growth factor specifies organizational behavior in vascular smooth muscle cell cultures. J Cell Biol 1987 105: 465–471.

    Article  PubMed  CAS  Google Scholar 

  40. Moses HL. The biological actions of transforming growth factor ß. Growth factors: From genes to clinical applications, edited by Vicki R, Sara et al, Raven Press, New York, 1990.

    Google Scholar 

  41. Goodman LV, Majack RA. Vascular smooth muscle cells express distinct transforming growth factor-ß receptor phenotypes as a funcion of cell density in culture. J Biol Chem 1989; 264: 5241–5244.

    PubMed  CAS  Google Scholar 

  42. Owens GK, Geistetrfer AT, Yang YW, Komoriya A. Transforming growth factor-ß-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol 1988; 107: 771–780.

    Article  PubMed  CAS  Google Scholar 

  43. Hamet P, Hadrava V, Kruppa U, Tremblay J. Transforming growth factor ßl expression and effect in aortic smooth muscle cells from spontaneously hypertensive rats. Hypertension 1991; 17: 896–901.

    Article  PubMed  CAS  Google Scholar 

  44. Starksen NF, Harsh GR, Gibbs VC, Williams LT. Regulated expression of the platelet-derived growth factor A chain gene in microvascular endothelial cells. J Biol Chem 1987; 262: 14381–14384.

    PubMed  CAS  Google Scholar 

  45. Daniel TO, Gibbs VC, Milfay DF, Williams CT. Agents that increase cAMP accumulation block endothelial C-SIS induction by thrombin and transforming growth factor-ß. J Biol Chem 1987; 262: 11893–11896.

    PubMed  CAS  Google Scholar 

  46. Majack RA, Majesky MW, Goodman LV. Role of PDGF-A expression in the control of vascular smooth muscle cell growth by transforming growth factor-ß. J Cell Biol 1990; 111: 239–247.

    Article  PubMed  CAS  Google Scholar 

  47. Botney MD, Parks WC, Crouch EC, Stenmark K, Mecham RP. Transforming growth factor-ßl is decreased in remodeling hypertensive bovine pulmonary arteries. J Clin Inv 1992; 89: 1629–1635.

    Article  CAS  Google Scholar 

  48. Wagenvoort CA, Wagenvoort N. Pathology of pulmonary hypertension. John Wiley & Sons, Inc., New York 1977.

    Google Scholar 

  49. Poiani GJ, Tozzi CA, Yohn SE, Pierce RA, Belsky SA, Berg RA, Yu SY, Deak SB, Riley DJ. Collagen and elastin metabolism in hypetensive pulmonary arteries of rats. Circ Res 1990; 66: 968–978.

    Article  PubMed  CAS  Google Scholar 

  50. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kerhl JH, Fauci AS. Transforming growth factor type b: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 1986; 83: 4167–4171.

    Article  PubMed  CAS  Google Scholar 

  51. Khalil N, Bereznay O, Sporn M, Greenberg AH. Macrophage production of transforming growth factor ß and fibroblast collagen synthesis in chronic pulmonary inflammation. J Exp Med 1989, 170: 727–735.

    Article  PubMed  CAS  Google Scholar 

  52. Sarzani R, Arnaldi G, Takasaki I, Brecher P, Chobanian AV. Effects of hypertension and aging on platelet-derived growth factor and platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension 1991; 18(suppl III): III–93–III–99.

    Google Scholar 

  53. Antonelli-Orlidge A, Saunders KB, Smith SR, D’Amore PA. An activated form of transforming growth factor ß is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 1989; 86: 4544–4548.

    Article  PubMed  CAS  Google Scholar 

  54. Saltis J, Agrotis A, Bobik A. Transforming growth factor-beta1 enhances the proliferative effects of epidermal growth factor on vascular smooth muscle from the spontaneously hypertensive rat. J Hypertens 1991, 9(suppl 6): S184–S185.

    CAS  Google Scholar 

  55. Ross R, Raines EW, Bowen-Pope DF. The biology of platelet-derived growth factor. Cell 1986; 46: 155–169.

    Article  PubMed  CAS  Google Scholar 

  56. Sitaras NM, Sariban E, Pantazis P, Zetter B, Antoniades HN. Human iliac artery endothelial cells express both genes encoding the chains of platelet-derived growth factor (PDGF) and synthetize PDGF-like mitogen. J Cell Physiol 1987; 132: 376–380.

    Article  PubMed  CAS  Google Scholar 

  57. Hammacher A, Mellstrom K, Heldin C-H, Westermark B. Isoform-specific induction of actin reorganization by platelet-derived growth factor suggests that the functionally active receptor is a dimer. EMBO J 1989; 8: 2489–2495.

    PubMed  CAS  Google Scholar 

  58. Seifert RA, Hart CE, Phillips PE, Forstrom JW, Ross R, Murray MJ, Bowen-Pope DF. Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J Biol Chem 1989; 264: 8771–8778.

    PubMed  CAS  Google Scholar 

  59. Sarzani R, Arnaldi G, Chobanian AV. Hypertension-induced changes of platelet-derived growth factor receptor expression in rat aorta and heart. Hypertension 1991; 17: 888–895.

    Article  PubMed  CAS  Google Scholar 

  60. Haudenschild CC, Grunwald J, Chobanian AV. Effects of hypertension on migration and proliferation of smooth muscle in culture. Hypertension 1985; 7(suppl I): I–101–I–104.

    Google Scholar 

  61. Printseva OY. Tjurmin AV, Rudchenko SA, Repin VS. Noradrenaline induces the polyploidization of smooth muscle cells: the synergism of second messengers. Exp Cell Res 1989; 184: 342–350.

    Article  PubMed  CAS  Google Scholar 

  62. Geisterfer AAT, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res 1988; 62: 749–756.

    Article  PubMed  CAS  Google Scholar 

  63. Geisterfer AAT, Owens GK. Arginine vasopressin-induced hypertrophy of cultured rat. aortic smooth muscle cells. Hyprtension 1989; 14: 413–420.

    CAS  Google Scholar 

  64. Majesky MW, Daemen MJAP, Schwartz SM. al-adrenergic stimulation of platelet-derived growth factor A-chain gene expression in rat aorta. J Biol Chem 1990; 265: 1082–1088.

    PubMed  CAS  Google Scholar 

  65. Bobik A, Grinpukel S, Little PJ, Grooms A, Jackman G. Angiotensin II and noradrenaline increase PDGF BB receptors and potentiate PDGF BB stimulated DNA synthesis in vascular smooth muscle. Biochem Biophys Res Commun 1990; 166: 580–588.

    Article  PubMed  CAS  Google Scholar 

  66. Hajjar KA, Hajjar DP, Silverstein RL, Nachman RL. Tumor necrosis factor-mediated release of platelet-derived growth factor from cultured endothelial cells. J Exp Med 1987; 166: 235–245.

    Article  PubMed  CAS  Google Scholar 

  67. Maier JAM, Voulalas P, Roeder D, Maliag T. Extension of the lifespan of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 1990; 249: 1570–1574.

    Article  PubMed  CAS  Google Scholar 

  68. Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 1978; 253: 2769–2776.

    PubMed  CAS  Google Scholar 

  69. Salmon WD Jr, Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 1957; 49: 825–836.

    PubMed  CAS  Google Scholar 

  70. D’Ercole AJ, Stiles AD, Underwood LE. Tissue concentrations of somatomedin-C: further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci USA 1984; 81: 935–939.

    Article  PubMed  Google Scholar 

  71. Englemann GL, Boehm KD, Haskell JF, Khairallah PA, Ilan J. Insulin-like growth factors and neonatal cardiomyocyte development: ventricular gene expression and membrane receptor variations in normotensive and hypertensive rats. Mol Cell Endocrinol 1989; 63: 1–14.

    Article  Google Scholar 

  72. Delafontaine P, Bernstein KE, Alexander RW. Insulin-like growth factor I gene expression in vascular cells. Hypertension 1991; 17: 693–699.

    Article  PubMed  CAS  Google Scholar 

  73. Clemmons DR. Exposure to platelet-derived growth factor modulates the porcine aortic smooth muscle cell response to somatomedin-C. Endocrinology 1985; 117: 77–83.

    Article  PubMed  CAS  Google Scholar 

  74. Calvin RB, Antoniades HN. Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 1987; 84: 7696–7700.

    Article  Google Scholar 

  75. Badesch DB, Lee PDK, Parks WC, Stenmark KR. Insulin-like growth factor I stimulated elastin synthesis by bovine pulmonary arterial smooth muscle cells. Biochem Biophys Res Commun 1989; 160: 382–387.

    Article  PubMed  CAS  Google Scholar 

  76. Delafontaine P, Lou H, Alexander RW. Regulation of insulin-like growth factor I messager RNA levels in vascular smooth muscle cells. Hypertension 1991; 18: 742–747.

    Article  PubMed  CAS  Google Scholar 

  77. Fath KA, Hanson MC, Delafontaine P, Alexander RW. Hypertension induces insulin-like growth factor I gene expression in rat aorta (abstract). Circulation 1990; 82(supllIII): III–761.

    Google Scholar 

  78. Cercek B, Fishbein MC, Forrester JS, Helfant RH, Fagin JA. Induction of insulin-like growth factor-I mRNA in rat aorta after balloon denudation. Circ Res 1990; 66: 1755–1760.

    Article  PubMed  CAS  Google Scholar 

  79. Bondjers G, Glukhova M, Hansson GK, Postnov YV, Reidy MA, Scharwtz SM. Hypertension and atherosclerosis. Cause and effect, or two effects with one unknown cause? Circulation 1991; 84(supll VI); VI–2–VI–16.

    Google Scholar 

  80. Wahlander H, Isgaard J, Jennische E, Friberg P. Left ventricular insulin-like growth factor I increases in early renal hypertension. Hypertension 1992; 19: 25–32.

    Article  PubMed  CAS  Google Scholar 

  81. Lever AF. Slow pressor mechanisms in hypertension: a role for hypertrophy of resistance vessels? J Hypertension 1986; 4: 515–524.

    Article  CAS  Google Scholar 

  82. Esch F, Baird A, Ling N at al.. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparaison with tha amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 1985; 82: 6507–6511.

    Article  PubMed  CAS  Google Scholar 

  83. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989; 58: 575–606.

    Article  PubMed  CAS  Google Scholar 

  84. Mignatti P, Tsuboi R, Robbins E, Rifkin DB. In vitro angiogenesis on human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases. J Cell Biol 1989; 108: 671–682.

    Article  PubMed  CAS  Google Scholar 

  85. Saksela O, Rifkin DB. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity. J Cell Biol 1990; 110: 767–775.

    Article  PubMed  CAS  Google Scholar 

  86. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C, Ito H. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 1992; 257: 1401–1403.

    Article  PubMed  CAS  Google Scholar 

  87. Winkles JA, Friesel R, Burgess WH, Howk R, Mehlman T, Weinstein R, Maciag T. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor). Proc Natl Acad Sci USA 1987; 84: 7124–7128.

    Article  PubMed  CAS  Google Scholar 

  88. Gospodarowicz D, Ferrara N, Haaparanta T, Neufeld G. Basic fibroblast growth factor: expression in cultured bovine vascular smooth muscle cells. Eur J Cell Biol 1988; 46: 144–151.

    PubMed  CAS  Google Scholar 

  89. Lindner V, Majack RA, Reidy MA. Basic fibroblast growth factor stimulates endothelial regrowth and proliferation in denuded arteries. J Clin Inv 1990; 85: 2004–2008.

    Article  CAS  Google Scholar 

  90. Lindner V, Lappi DA, Baird A, Majack RA, Reidy MA. Role of basic fibroblast growth factor in vascular lesion formation. Circ Res 1991; 68: 106–113.

    Article  PubMed  CAS  Google Scholar 

  91. McNeil PL, Muthukrishnan L, Warder E, D’Amore PA. Growth factors are released by mechanically wounded endothelial cells. J Cell Biol 1989; 811–822.

    Google Scholar 

  92. Gajdusek CM, Carbon S. Injury-induced release of basic fibroblast growth factor from bovine aortic endothelium. J Cell Physiol 1989; 139: 570–579.

    Article  PubMed  CAS  Google Scholar 

  93. Lindner V, Reidy MA. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Nat Acad Sci USA 1991; 28: 3739–3743.

    Article  Google Scholar 

  94. Olson NE, Chao S, Lindner V, Reidy MA. Intimai smooth muscle cell proliferation after balloon catheter injury. Am J Pathol 1992; 140: 1017–1023.

    PubMed  CAS  Google Scholar 

  95. Levi-Montalcini R, Angeletti PU. Nerve growth factor. Physiol Rev 1968; 48: 534–569.

    PubMed  CAS  Google Scholar 

  96. Thoenen H, Barde YA. Physiology of nerve growth factor. Physiol Rev 1980; 60: 1284–1335.

    PubMed  CAS  Google Scholar 

  97. Korshing S, Thoenen H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with the density of sympathetic innervation. Proc Natl Acad Sci USA 1983; 80: 3513–3516.

    Article  Google Scholar 

  98. Shelton DL, Reichardt LF. Expression of the ß-nerve growth factor gene correlated with the density of sympathetic innervation in effector organs. Proc Natl Acad Sci USA 1984; 81–7951–7955.

    Google Scholar 

  99. Ichijima K. Morphological studies on the peripheral small arteries of spontaneously hypertensive rats. Jpn Circ J 1969, 33: 786–81

    Google Scholar 

  100. Head RJ, Cassis LA, Robinson RL, Westfall DP, Stizel RE. Altered catecholamine contents in vascular and non-vascular tissues in genetically hypertensive rats. Bloods vessels 1985: 22: 196–204.

    CAS  Google Scholar 

  101. Cassis L, Stizel RE, Head RJ. Hyper-noradrenergic innervation of the caudal artery spontaneously hypertensive rats: an influence upon neuroeffector mechanisms. J Pharmacol exp ther 1985; 234: 792–803.

    PubMed  CAS  Google Scholar 

  102. Donohue SL, Stizel RE, Head RJ. Time course of changes in the norepinephrine content of tissues from spontaneously hypertensive and wistar-kyoto rats. J Pharmacol Exp Ther 1988; 245: 24–31.

    PubMed  CAS  Google Scholar 

  103. Donohue SJ, Head RJ, Stizel RE. Eleveted nerve growth factors levels in young spontaneously hypertensives rats. Hypertension 1989; 14: 421–426.

    Article  PubMed  CAS  Google Scholar 

  104. Ueyama T, Hamada M, Hano T, Nishio I, Masuyama Y, Furukawa S. Increased nerve growth factor levels in spontaneously hypertensive rats. J Hypertens l992; 10: 215–219.

    Article  Google Scholar 

  105. Lee RMKW, Triggle CR, Cheung DWT, Coughlin MD. Structural and functional consequence of neonatal sympathectomy on the blood vessels of spontaneously hypertensive rats. Hypertension 1987, 10: 328–338.

    Article  PubMed  CAS  Google Scholar 

  106. Groopman JE, Mitsuyasu RT, DeLeo MJ, Oette DH, Golde DW. Effect of recombinant human granulocyte-macrophage colony-stimulation factor on myelopoiesis in the acquired immunodeficiency syndrome. N Engl J Med 1987,317: 593–598.

    Article  PubMed  CAS  Google Scholar 

  107. Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, Ruoslahti E. Natural inhibitor of transforming growth factor-ß protects against scarring in experimental kidney disease. Nature 1992; 360: 361–364.

    Article  PubMed  CAS  Google Scholar 

  108. Levy BI, Michel JB, Salzmann JB, Azizi M, Poitevin P, Safar M, Camilleri JP. Effects of chronic inhibition of converting enzyme on mechanical and structural properties of arteries in rat renovascular hypertension. Circ Res 1988; 63: 227–239.

    Article  PubMed  CAS  Google Scholar 

  109. Mulvany MJ. Resistance vessel structure; effects of treatment. J Cardiovasc Pharmacol 1991; 17(supll 2): S58–S63.

    Article  PubMed  Google Scholar 

  110. Leenen FHH, Prowse S. Time course of changes in cardiac hyprtrophy and pressor mechanisms in two-kidney, one clip hypertensive rats during treatment with minoxidil, enalapril or after uninephrectomy. J Hypertens 1987; 5: 73–83.

    Article  PubMed  CAS  Google Scholar 

  111. Michel JB. Relationship between decrese in afterload and beneficai effects of ACE inhibitors in experimental cardiac hypertrophy and congestive heart failure. Eur Heart J 1990; 11(suppl D): 17–26.

    PubMed  CAS  Google Scholar 

  112. Frohlich ED, Apstein C, Chobanian AV, Devereux RB, Dustan HP, Dzau V, Fauad-Tarazi F, Horan MJ, Marcus M, Massie B, Pfeffer MA, Re RN, Roccella EJ, Savage D, Shub C. The heart in hypertension. N Engl J Med 1992; 327: 998–1007.

    Article  PubMed  CAS  Google Scholar 

  113. Sen S, Tarazi RC, Bumpus FM. Cardiac hypertrophy and antihypertensive therapy. Cardiovasc Res 1977; 11: 427–433.

    Article  PubMed  CAS  Google Scholar 

  114. Tsoporis J, Leenen FHH. Effects of arterial vasodilators on cardiac hypertrophy and sympathetic activity in rats. Hypertension 1988; 11: 376–385.

    Article  PubMed  CAS  Google Scholar 

  115. Heagerty AM. Angiotensin II: vasoconstrictor or growth factor? J Cardiovasc Pharmacol 1991; 18(supl 2): S14–S19.

    PubMed  CAS  Google Scholar 

  116. Schneider MD, Parker TG. Cardiac myocytes as targets for the action of peptide growth growth factors. Circulation 1990; 81: 1443–1456.

    Article  PubMed  CAS  Google Scholar 

  117. Contard F, Koteliansky V, Marotte F, Dubus I, Rappaport L, Samuel JL. Specific alterations in the distribution of extracellular matrix components within rat myocardium during the development of pressure overload. Lab Invest 1991; 64: 65–75.

    PubMed  CAS  Google Scholar 

  118. Samuel JL, Barrieux A, Dufour S, Dubus I, Contard F, Faradian F, Koteliansky V, Marotte F, Thiery JP, Rappaport L. Reexpression of a fetal pattern of fibronectin mRNAs during the development of rat cardiac hypertrophy induced by pressure overload. J Clin Invest 1991; 88: 1737–1746.

    Article  PubMed  CAS  Google Scholar 

  119. French JE, Jennings MP, Poole JCF, Robinson DS, Florey H. Intimai changes in the arteries of the aging swine. Proc R Soc Lond (Biol) 1963; 158: 24–42.

    Article  CAS  Google Scholar 

  120. Gerrity RG, Cliff WJ. The aortic intima in young and aging rats. Exp Mol Patho 1972; 16: 382–402.

    Article  CAS  Google Scholar 

  121. Haudenschild CC, Prescott MF, Chobanian AV. Aortic endothelial and subendothelial cells in experimental hypertension and aging. Hypertension 1981; 3(supll I): I–148–I153.

    Google Scholar 

  122. Wolinsky H. Long term effects of hypertension on the rat aortic wall and their relation to concurrent aging changes: Morpholigic and chemical studies. Circ Res 1972; 30: 301–309.

    Article  PubMed  CAS  Google Scholar 

  123. Owens GK. Differential effects of antihypertensive drug therapy on vascular smooth muscle cell hypertrophy, hyperploidy, and hyperplasia in the spontaneously hypertensive rat. Circ Res 1985; 56: 525–536.

    Article  PubMed  CAS  Google Scholar 

  124. Barrett TB, Sampson P, Owens GK, Schwart SM, Benditt EP. Polyploid nuclei in human artery wall smooth muscle cells. Proc Natl Acad Sci USA 1983; 80: 882–885.

    Article  PubMed  CAS  Google Scholar 

  125. Arnal J-F, Warin L, Michel J-B. Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase. J Clin Inv 1992; 90: 647–652.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

El Amrani, AI.K., El Amrani, F., Cummins, P. (1993). Growth factors and hypertension: Implications for a role in vascular remodelling. In: Cummins, P. (eds) Growth Factors and the Cardiovascular System. Developments in Cardiovascular Medicine, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3098-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3098-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6354-5

  • Online ISBN: 978-1-4615-3098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics