Skip to main content

Some aspects of growth signal transduction in vascular smooth muscle cells

  • Chapter
Growth Factors and the Cardiovascular System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 147))

  • 37 Accesses

Abstract

Proliferation of vascular smooth muscle cells (VSMC) is a characteristic feature of repair following vascular injury and adaptation to increased intraluminal pressure such as occurs in arteriovenous fistulas and in pulmonary hypertension. The intimai smooth muscle accumulation in atherosclerosis, restenosis after angioplasty and in vein grafts is arguably a consequence of these same repair and haemodynamic adaptation mechanisms [1]. Intimai VSMC proliferation becomes of pathological significance when it causes an obstruction of normal flow and can then lead to heart failure (especially if in the pulmonary circulation), angina pectoris (if in the coronary circulation), cerebral ischaemia or peripheral organ ischaemia. These circulatory diseases together represent the most prevalent causes of morbidity and mortality in the developed world [2] and there is therefore an intense clinical and basic research effort aimed at improving therapy, one target for which is the design of clinically useful inhibitors of VSMC proliferation. Frustratingly, despite some 50 or so recent clinical trials of agents that have been shown to be effective in tissue culture or animal models, none of these has been of consistent benefit in preventing angioplasty restenosis in man [3], which indicates the need for more potent and selective agents. One promising approach to achieving such inhibitors is to intervene in the intracellular signalling pathways that mediate proliferation. Such a strategy rationally depends on knowledge of the signalling pathways themselves and the extent to which these are tissue-specific for VSMC. In this article, we will attempt to overview the relative limited information regarding these pathways in VSMC, relying where necessary on analogies with other cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ip JH, Fuster V, Badimon L, Badimon J, Taubman MB, Chesebro JH. Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J Am Coll Cardiol 1990; 15: 1667–1687.

    Article  PubMed  CAS  Google Scholar 

  2. Feinlieb M. Changing trends in atherosclerosis. In: Shepherd J, Morgan HG, Packard CJ, Brownlie SM editors Atherosclerosis: Developments, complications and treatment. Amsterdam: Elsevier Science Publishers, 1987: 53–64.

    Google Scholar 

  3. Califf RM, Fortin DF, Frid DJ, et al. Restenosis after coronary angioplasty: an overview. J Am Coll Cardiol 1991; 17(Suppl B): 2B–13B.

    Article  PubMed  CAS  Google Scholar 

  4. Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity forfibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989; 243: 393–396.

    Article  PubMed  CAS  Google Scholar 

  5. Battegay E, Raines EW, Seifert RA, Bowen-Pope DF, Ross R. TGF-ß induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 1990; 63: 515–524.

    Article  PubMed  CAS  Google Scholar 

  6. Majack RA, Majesky MW, Goodman LV. Role of PDGF-A Expression in the Control of Vascular Smooth Muscle Cell Growth by Transforming Growth Factor-Beta. J Cell Biol 1990; 111(1): 239–247.

    Article  PubMed  CAS  Google Scholar 

  7. Araki S-I, Kawahara Y, Fukuzaki H, Takai Y. Serotonin plays a major role in serum-induced phospholipase C-mediated hydrolysis of phosphoinositides and DNA synthesis in vascular smooth muscle cells. Atherosclerosis 1990; 83: 29–34.

    Article  PubMed  CAS  Google Scholar 

  8. Hirata Y, Takagi Y, Fukuda Y, Marumo F. Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis 1989; 78: 225–228.

    Article  PubMed  CAS  Google Scholar 

  9. Nakaki T, Nakayama M, Yamamoto S, Kato R. Endothelin-mediated stimulation of DNA synthesis in vascular smooth muscle cells. Biochem Biophys Res Comm 1989; 158(3): 880–883.

    Google Scholar 

  10. Weissberg PL, Witchell C, Davenport AP, Hesketh TR, Metcalfe JC. The Endothelin Peptides ET-1, ET-2, ET-3 and sarafotoxin S6b are Co-Mitogenic with Platelet-Derived Growth Factor for Vascular Smooth Muscle Cells. Atherosclerosis 1990; 85: 257–262.

    Article  PubMed  CAS  Google Scholar 

  11. Dzau VJ, Gibbons GH, Pratt RE. Molecular mechanisms of vascular renin-angiotensin system in myointimal hyperplasia. Hypertension 1991; 18(Suppl 2): II–100–11–105.

    Google Scholar 

  12. Hahn AWA, Resink TJ, Bernhardt J, Ferracin F, Bühler FR. Stimulation of autocrine platelet-derived growth factor AA-homodimer and transforming growth factorß in vascular smooth muscle cells. Biochem Biophys Res Commun 1991; 178: 1451–1458.

    Article  PubMed  CAS  Google Scholar 

  13. Ullrich A, Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell 1990; 61: 203–212.

    Article  PubMed  CAS  Google Scholar 

  14. Cadena DL, Gill GN. Receptor tyrosine kinases. FASEB J 1992; 6: 2332–2337.

    PubMed  CAS  Google Scholar 

  15. Chen WS, Lazar CS, Poenie M, Tsien RY, Gill GN, Rosenfeld MG. Requirement for intrinsic protein tyrosine kinase in the immediate and late actions of the EGF receptor. Nature 1987; 328: 820–823.

    Article  PubMed  CAS  Google Scholar 

  16. Honegger AM, Szapary D, Schmidt A, et al. A mutant epidermal growth factor receptor with defective protein tyrosine kinase is unable to stimulate proto-oncogene expression and DNA synthesis. Mol Cell Biol 1987; 7: 4568–4571.

    PubMed  CAS  Google Scholar 

  17. Williams LT. Signal transduction by the platelet-derived growth factor receptor. Science 1989; 243: 1564–1570.

    Article  PubMed  CAS  Google Scholar 

  18. Clegg KB, Sambhi MP. Inhibition of epidermal growth factor-mediated DNA synthesis by a specific tyrosine kinase inhibitor in vascular smooth muscle cells of the spontaneously hypertensive rat. J Hypertens 1989; 7: S144–S145.

    CAS  Google Scholar 

  19. Bilder GE, Krawiec JA, McVety K, et al. Tyrphostins inhibit PDGF-induced DNA synthesis and associated early events in smooth muscle cells. Am J Physiol 1991; 260: C721–C730.

    PubMed  CAS  Google Scholar 

  20. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science 1991; 252: 668–674.

    Article  PubMed  CAS  Google Scholar 

  21. Tsuda T, Kawahara Y, Shii K, Koide M, Ishida Y, Yokoyama M. Vasoconstrictor-induced protein-tyrosine phosphorylation in cultured vascular smooth muscle cells. FEBS Letts 1991; 285: 44–48.

    Article  CAS  Google Scholar 

  22. Koide M, Kawahara Y, Tsuda T, Ishida Y, Shii K, Yokoyama M. Stimulation of protein-tyrosine phosphorylation by endothelin-1 in cultured vascular smooth muscle cells. Atherosclerosis 1992; 92: 1–7.

    Article  PubMed  CAS  Google Scholar 

  23. Pelech SL, Sanghera JS. Mitogen-activated protein kinases: versatile transducers for cell signaling. TIBS 1992; 17: 233–238.

    PubMed  CAS  Google Scholar 

  24. Rapp U. Role of Raf-1 serine/threonine protein kinase in growth factor signal transduction. Oncogene 1991; 6: 495–500.

    PubMed  CAS  Google Scholar 

  25. Erikson RL. Structure, expression and regulation of protein kinases involved in the phosphorylation of ribosomal protein S6. J Biol Chem 1991; 266: 6007–6010.

    PubMed  CAS  Google Scholar 

  26. Chen R-H, Chung J, Blenis J. Regulation of pp90rsk phosphorylation and S6 phosphotransferase activity in Swiss 3T3 cells by growth factor-, phorbol ester-, and cyclic AMP-mediated signal transduction. Mol Cell Biol 1991; 11: 1861–1867.

    PubMed  CAS  Google Scholar 

  27. Alvarez E, Northwood IC, Gonzalez FA, et al. Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. J Biol Chem 1991; 266: 15277–15285.

    PubMed  CAS  Google Scholar 

  28. Pulverer BJ, Kyriakis JM, Avruch A, Nikolakaki E, Woodgett JR. Phosphorylation of c-jun mediated by MAP kinases. Nature 1991; 353: 670–674.

    Article  PubMed  CAS  Google Scholar 

  29. Gille H, Sharrocks AD, Shaw PE. Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promoter. Nature 1992; 358: 414–417.

    Article  PubMed  CAS  Google Scholar 

  30. Downward J. Regulatory mechanisms for ras proteins. Bioessays 1992; 14: 177–184.

    Article  PubMed  CAS  Google Scholar 

  31. Williams NG, Roberts TM, Li P. Both p21ras and pp60v-src are required, but neither alone is sufficient, to activate the Raf-1 kinase. Proc Natl Acad Sci USA 1992; 89: 2922–2926.

    Article  PubMed  CAS  Google Scholar 

  32. Dent P, Haser W, Haystead TAJ, Vincent LA, Roberts TM, Sturgill TW. Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 1992; 257: 1404–1407.

    Article  PubMed  CAS  Google Scholar 

  33. Sturgill TW, Ray LB, Erikson E, Mailer JL. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 1988; 334: 715–718.

    Article  PubMed  CAS  Google Scholar 

  34. Downward J, Graves JD, Warne GH, Rayter S, Cantrell DA. Stimulation of p21 ras upon T-cell activation. Nature 1990; 346: 719–723.

    Article  PubMed  CAS  Google Scholar 

  35. Rhee SG. Inositol-specific phospholipase C: interaction with the gammal isoform with tyrosine kinase. Trends in Biochem Sci 1991; 16: 297–301.

    Article  CAS  Google Scholar 

  36. Meldrum E, Parker PJ, Carozzi A. The Ptdlns-PLC superfamily and signal transduction. Biochim Biophys Acta 1991; 1092: 49–71.

    Article  PubMed  CAS  Google Scholar 

  37. Nishibe S, Wahl MI, Hernandez-Sotomayor SMT, Tonks NK, Rhee SG, Carpenter G. Increase of the catalytic activity of phospholipase C-gl by tyrosine phosphorylation. Science 1990; 250: 1253–1256.

    Article  PubMed  CAS  Google Scholar 

  38. Mohammadi M, Dionne CA, Li W, et al. Point mutation of FDF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 1992; 358: 681–684.

    Article  PubMed  CAS  Google Scholar 

  39. Peters KG, Marie J, Wilson E, et al. Point mutation of FGF receptor abolishes phosphatidylinositol turnover and Ca2+ flux but not mitogenesis. Nature 1992; 358: 678–681.

    Article  PubMed  CAS  Google Scholar 

  40. Carpenter CL, Duckworth BC, Auger KR, Cohen B, Schaffhausen BS, Cantley LC. Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem 1990; 265: 19704–19711.

    PubMed  CAS  Google Scholar 

  41. Shibasaki F, Homma Y, Takenawa T. Two types of phosphatidylinositol 3-kinase from bovine thymus. J Biol Chem 1991; 266: 8108–8114.

    PubMed  CAS  Google Scholar 

  42. Cantley LC, Auger KR, Carpenter C, et al. Oncogenes and signal transduction. Cell 1991; 64: 281–302.

    Article  PubMed  CAS  Google Scholar 

  43. Coughlin SR, Escobedo JA, Williams LT. Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science 1989; 243: 1191–1194.

    Article  PubMed  CAS  Google Scholar 

  44. Kazlauskas A, Cooper JA. Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 1989; 58: 1121–1133.

    Article  PubMed  CAS  Google Scholar 

  45. Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 1989; 57: 167–175.

    Article  PubMed  CAS  Google Scholar 

  46. Hawkins PT, Jackson TR, Stephens LR. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2-OH kinase. Nature 1992; 358: 157–159.

    Article  PubMed  CAS  Google Scholar 

  47. Katzav S, Cleveland JL, Heslop HE, Pulido D. Loss of the amino-terminal helix-loop domain of the vav proto-oncogene activates its transforming potential. Mol Cell Biol 1991; 11: 1912–1920.

    PubMed  CAS  Google Scholar 

  48. Bustelo XR, Ledbetter JA, Barbacid M. Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 1992; 356: 68–71.

    Article  PubMed  CAS  Google Scholar 

  49. Margolis B, Hu P, Katzav S, et al. Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature 1992; 356: 71–74.

    Article  PubMed  CAS  Google Scholar 

  50. Berridge MI. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 1984; 220: 345–360.

    PubMed  CAS  Google Scholar 

  51. Dohlman HG, Caren MG, Lefkowitz RJ. Biochemistry 1987; 26: 2657–2664.

    Article  PubMed  CAS  Google Scholar 

  52. Birnbaumer L, Abramowitz J, Brown AM. Biochim Biophys Acta 1990; 1031: 163–224.

    Article  PubMed  CAS  Google Scholar 

  53. Nishizuka Y. Studies and perspectives of protein kinase C. Science 1986; 233: 305–12.

    Article  PubMed  CAS  Google Scholar 

  54. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988; 334: 661–665.

    Article  PubMed  CAS  Google Scholar 

  55. Kariya K, Kawahara Y, Fukuzaki H, et al. Two types of protein kinase C with different functions in cultured rabbit aortic smooth muscle cells. Bichem Biophys Res Comm 1989; 16: 1020–1027.

    Article  Google Scholar 

  56. Rosengurt E. Signal transduction pathways in mitogenesis.Br Med Bull 1989; 45: 515–528.

    Google Scholar 

  57. Mehmet H, Rosengurt E. Regulation of c-fos expression in Swiss 3T3 cells: An interplay of multiple signal transduction pathways. Brit Med Bull 1991; 47: 76–86.

    PubMed  CAS  Google Scholar 

  58. Ohmi K, Yamashita S, Nonomura Y. The effect of K252a, a protein kinase C inhibitor on the proliferation of vascular smooth muscle cells. Biochem Biophys Res Comm 1990; 173: 976–981.

    Article  PubMed  CAS  Google Scholar 

  59. Tagaki Y, Hirata Y, Takata S, et al. Effects of protein kinase inhibitors on growth factor-stimulated DNA synthesis in cultured rat vascular smooth muscle cells. Atherosclerosis 1988; 74: 227–230.

    Article  Google Scholar 

  60. Davis PD, Hill CH, Keech E, et al. Potent selective inhibitors of protein kinase C. Febs Lett 1989; 259: 61–63.

    Article  PubMed  CAS  Google Scholar 

  61. Evans ME, Assender JW, Newby AC. Selective inhibitors of protein kinase C are potent inhibitors of vascular smooth muscle proliferation. Br Heart J 1992; 68: 109.

    Google Scholar 

  62. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim Biophys Acta 1991; 1072: 129–157.

    PubMed  CAS  Google Scholar 

  63. Herschman HR. Primary response genes induced by growth factors and tumour promotore. Annu Rev Biochem 1991; 60: 281–319.

    Article  PubMed  CAS  Google Scholar 

  64. Southgate KM, Davies M, Booth RFG, Newby AC. Involvement of extracellular matrix degrading metalloproteinases in rabbit aortic smooth muscle cell proliferation. Biochem J 1992; 288: 93–99.

    PubMed  CAS  Google Scholar 

  65. Sjölund M. Autocrine stimulation of arterial smooth muscle cells by platelet-derived growth factor. Stockholm: Karolinska Instituted 1990.

    Google Scholar 

  66. Simons M, Edelman ER, De Keyser J-L, Langer R, Rosenberg RD. Antisense c-myb oligonucleotides inhibit intimai arterial smooth muscle accumulation in vivo. Nature 1992; 359: 67–70.

    Article  PubMed  CAS  Google Scholar 

  67. Speir E, Epstein E. Inhibition of smooth muscle cell proliferation by an antisense olidodeoxynucleotide targeting the messemger RNA encoding proliferating cell nuclear antigen. Circulation 1992; 86: 538–547.

    Article  PubMed  CAS  Google Scholar 

  68. Nabel EG, Plautz G, Nabel GJ. Gene transfer into vascular cells. J Am Coll Cardiol 1991; 17(SupplB): 189B–194B.

    Article  PubMed  CAS  Google Scholar 

  69. Banskota NK, Taub R, Zellner K, Olsen P, King G. Characterization of induction of protooncogene c-myc and cellular growth in human vascular smooth muscle cells by insulin and IGF-1. 1989

    Google Scholar 

  70. Gadeau A-P, Campan M, Desgranges C. Induction of cell cycle-dependent genes during cell cycle progression of arterial smooth muscle cells in culture. J Cell Physiol 1991; 146: 356–361.

    Article  PubMed  CAS  Google Scholar 

  71. Campan M, Desgranges C, Gadeau A-P, Millet D, Belloc F. Cell cycle dependent gene expression in quiescent stimulated and asynchronously cycling arterial smooth muscle cells in culture. J Cell Physiol 1992; 150: 493–500.

    Article  PubMed  CAS  Google Scholar 

  72. Miano JM, Tota RR, Vlasic N, Danishefsky KJ, Stemerman MB. Early proto-oncogene expression in rat aortic smooth muscle cells following endothelial removal. Am J Pathol 1990; 137: 761–765.

    PubMed  CAS  Google Scholar 

  73. Bauters C, DeGroot P, Adamantidis M, et al. Proto-oncogene expression in rabbit aorta after wall injury. First marker of the cellular process leading to restenosis after angioplasty. Eur Heart J 1992; 13: 556–559.

    PubMed  CAS  Google Scholar 

  74. Newby AC, Southgate KM, Assender JW. Inhibition of vascular smooth muscle cell proliferation by endothelium-dependent vasodilators. Herz 1992; 17: 291–299.

    PubMed  CAS  Google Scholar 

  75. Rink TJ, Sage SO. Calcium signalling in human platelets. Annu Rev Physiol 1990; 52: 431–449.

    Article  PubMed  CAS  Google Scholar 

  76. Abe A, Karaki H. Effects of forskolin on cytosolic Ca++ level and contraction in vascular smooth muscle. J Pharmacol Exp Ther 1989; 249: 895–900.

    PubMed  CAS  Google Scholar 

  77. Assender JWA, Southgate KM, Hallett MB, Newby AC. Inhibition of proliferation but not Ca2+ mobilization by cAMP and cGMP in rabbit aortic smooth muscle cells. Biochem J 1992; 288: 527–532.

    PubMed  CAS  Google Scholar 

  78. Bennett MR, Evan G, Newby AC. Early down-regulation of c-myc proto-oncogene in inhibition of vascualr smooth muscle proliferation. Eur Heart J 1992; 13(Suppl): 28.

    Google Scholar 

  79. Loesberg C, Van Wijk R, Zandbergen J, Van Aken WG, Van Mourik JA, De Groot PHG. Cell cycle-dependent inhibition of human vascular smooth muscle cell proliferation by prostaglandin E1. Exp Cell Res 1985; 160: 117–125.

    Article  PubMed  CAS  Google Scholar 

  80. Fukumoto Y, Kawahara Y, Kariya K, Araki S, Fukuzaki H, Takai Y. Independent inhibition of DNA synthesis by protein kinase C, cyclic AMP and interferon alpha/beta in rabbit aortic smooth muscle cells. Biochem Biophys Res Comm 1988; 157: 337–345.

    Article  PubMed  CAS  Google Scholar 

  81. Morisaki N, Kansaki T, Motoyama N, Saito Y, Yoshida S. Cell cycle-dependent inhibition of DNA synthesis by prostaglandin I2 in cultured rabit aortic smooth muscle cells. 1988; 71: 165–171.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Newby, A.C., Brindle, N.P.J. (1993). Some aspects of growth signal transduction in vascular smooth muscle cells. In: Cummins, P. (eds) Growth Factors and the Cardiovascular System. Developments in Cardiovascular Medicine, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3098-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3098-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6354-5

  • Online ISBN: 978-1-4615-3098-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics