Skip to main content

Angiogenesis: A mechanism by which oncogenes and tumor suppressor genes regulate tumorigenesis

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 63))

Abstract

Normal cells become malignant in a tissue culture flask, in experimental animals, and in cancer patients, largely as a result of the accumulation of a series of genetic lesions that activate proto-oncogenes to oncogenes and that inactivate tumor suppressor genes, sometimes called anti-oncogenes [1]. About 50 oncogenes and a dozen anti-oncogenes have been cloned and sequenced. The functions of most of them are well understood in the sense that the primary structure and biochemical activity of the proteins they encode are known. The vast majority of these proteins are either transcription factors or participants in signal transduction pathways (see Chapter 1). However, the identification of an oncogene-encoded protein as a transcription factor or a member of a signal transduction pathway does not fully explain why an increase in its activity (or its loss of function in the case of the anti-oncogenic tumor suppressor genes) increases the likelihood that a cell will become tumorigenic. A complete understanding of how the activation of an oncogene contributes to tumorigenicity demands additional information. It requires (1) that the oncogene-regulated genes be identified and the function of their protein products determined and (2) that those oncogene-regulated proteins that play a crucial role in the development of the tumorigenic phenotype be differentiated from those that are irrelevant. One way to begin to identify crucial oncogene- and tumor suppressor generegulated proteins is to investigate molecules that control a phenotype known to be essential for tumor growth and then to determine if the production of such proteins is altered by oncogene activation or by suppressor gene loss. One phenotype that is particularly amenable to such analysis is angiogenesis — the ability to induce neovascularization or new blood vessel growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop JM: Molecular themes in oncogenesis. Cell 64:235–248, 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Klagsbrun M, D’Amore PA:Regulators of angiogenesis. Annu Rev Physiol 53:217–239, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Blood CH, Zetter BR: Tumor interactions with the vasculature: Angiogenesis and tumor metastasis. Biochim Biophys Acta 1032:89–118, 1990.

    PubMed  CAS  Google Scholar 

  4. Dunn CJ, Hardee MM, Gibbons AJ, Staite ND, Richard KA: Local pathological responses to slow-release recombinant interleukin-1, interleukin-2 and g-interferon in the mouse and their relevance to chronic inflammatory disease. Clin Sci 76:261–263, 1989.

    PubMed  CAS  Google Scholar 

  5. Giulian D, Woodward J, Young DG, Krebs JF, Lachman LB: Interleukin-1 injected into mammalian brain stimulates astrogliosis and neovascularization. J Neurosci 8:2485–2490, 1988.

    PubMed  CAS  Google Scholar 

  6. Mahadevan V, Hart IR, Lewis GP: Factors influencing blood supply in wound granuloma quantitated by a new in vivo technique. Cancer Res 49:415–419, 1989.

    PubMed  CAS  Google Scholar 

  7. Epstein RJ, Hendricks RL, Stulling RD:Interleukin-2 induces corneal neovascularization in A/J mice. Cornea 9:318–323, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Taniguchi E, Nagae Y, Watanabe H, Ohashi Y, Kinoshita S, Manabe R: The effect of recombinant epidermal growth factor in corneal angiogenesis. Nippon Ganka Gakkai Zasshi 95:52–58, 1991.

    PubMed  CAS  Google Scholar 

  9. Fernandez LA, Twickler J, Mead A: Neovascularization produced by angiotensin II. J Lab Clin Med 105:141–145, 1985.

    PubMed  CAS  Google Scholar 

  10. Berman M, Winthrop S, Ausprunk D, Rose J, Langer R, Gage J: Plasminogen activator (urokinase) causes vascularization of the cornea. Invest Opthalmol Vis Sci22:191–199, 1982.

    CAS  Google Scholar 

  11. Raju KS, Alessandri B, Ziehe M, Gullino PM: Ceruloplasmin, copper ions and angiogenesis. J Natl Cancer Inst 69:1183–1188, 1982.

    PubMed  CAS  Google Scholar 

  12. Takigawa M, Nishida Y, Suzuki F, Kishi J, Yamashita K, Hayakawa T: Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochem Biophys Res Commun 171:1264–1271, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Ziehe M, Morbidelli L, Pacini M, Geppetti P, Alessandri G, Maggi CA: Substance Pstimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc Res 40:264–278, 1990.

    Article  Google Scholar 

  14. Osthoff KS, Fruhbeis B, Overwien B, Hilbig B, Sorg C: Purification and characterization of a novel human angiogenic factor (h-AF). Biochem Biophys Res Commun 146:945–952, 1987.

    Article  CAS  Google Scholar 

  15. Fruhbeis B, Zwaldo G, Brocket E, Osthoff KS, Hagemeier H, Popoll H, Sorg C: Immunolocalization of an angiogenic factor (HAF) in normal inflammatory and tumor tissues. Int J Cancer 42:207–212, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. McAuslan BR, Reilly WG, Hannan GN, Gole GA: Angiogenic factors and their assay: Activity of formyl methionyl leucyl phenylalanine, adenosine diphosphate, heparin, copper, and bovine endothelium stimulating factor. Microvasc Res 26:323–338, 1983.

    Article  PubMed  CAS  Google Scholar 

  17. West DC, Kumar S: Hyaluronan and angiogenesis. In: The Biology of Hyaluronan (Ciba Foundation Symposium 143). Wiley, Chichester, 1989, pp 187–207.

    Google Scholar 

  18. Lebel L, Gerdin B: Sodium hyaluronate increases vascular ingrowth in the rabbit ear chamber. Int J Exp Pathol 72:111–118, 1991.

    PubMed  CAS  Google Scholar 

  19. Imre G: Lactic acid and neovascularization. Br J Opthalmol 75:254, 1991.

    Article  CAS  Google Scholar 

  20. Bouck N: Tumor angiogenesis: The role of oncogenes and tumor suppressor genes. Cancer Cells 2:179–185, 1990.

    PubMed  CAS  Google Scholar 

  21. Masferrer JL, Rimarachin JA, Gerritsen ME, Falck JR, Yadagiri P, Dunn MW, Laniado-Schwartzman M:12(R)-hydroxyeicosatrienoic acid, a potent chemotactic and angiogenic factor produced by the cornea. Exp Eye Res 52:417–424, 1991.

    Article  PubMed  CAS  Google Scholar 

  22. Dusseau JW, Hutchins PM, Malbasa DS: Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res 59:163–170, 1986.

    Article  PubMed  CAS  Google Scholar 

  23. Dusseau JW, Hutchins PM: Hypoxia-induced angiogenesis in chick chorioallantoic membranes: a role for adenosine. Respi Physiol 71:33–44, 1988.

    Article  CAS  Google Scholar 

  24. McAuslan BR, Reilly W: Selenium-induced cell migration and proliferation: Relevance to angiogenesis and microangiopathy. Microvasc Res 32:112–120, 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Parke A, Bhattacherjee P, Palmer RM, Lazarus NR: Characterization and quantification of copper sulfate-induced vascularization of the rabbit cornea. Am J Pathol 130:173–178, 1988.

    PubMed  CAS  Google Scholar 

  26. Weiss JB, Brown RA, Kumar S, Phillips P: An angiogenic factor isolated from tumors: A potent low molecular weight compound. Br J Cancer 40:493–496, 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Weiss JB, Hill CR, Davis RJ, McLaughlin B: Activation of mammalian procollagenase and basement membrane-degrading enzymes by a low molecular weight angiogenesis factor. Agents Actions 15:107–108, 1984.

    Article  CAS  Google Scholar 

  28. Brown RA, Taylor C, McLaughlin B, McFarland CD, Weiss JB, Ali SY: Epiphyseal growth plate cartilage and chondrocytes in mineralising cultures produce a low molecular mass angiogenic procollagenase activator. Bone Miner 3:143–158, 1987.

    PubMed  CAS  Google Scholar 

  29. Hockel M, Jung W, Vaupel P, Rabes H, Khaledpour C, Wissler JH: Purified monocyte-derived angiogenic substance (angiotropin) induces controlled angiogenesis associated with regulated tissue proliferation in rabbit skin. J Clin Invest 82:1075–1090, 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Oikawa T, Hirotani K, Ogasawara H, Katayama T, Nakamura O, Iwaguchi T, Hiragun A: Inhibition of angiogenesis by vitamin D3 analogues. Eur J Pharm 178:247–250, 1990.

    Article  CAS  Google Scholar 

  31. Taylor S, Folkman J: Protamine is an inhibitor of angiogenesis. Nature 297:307–312, 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Maione TE, Gray GS, Petro J, Hunt AJ, Donner AL, Bauer SI, Carson HF, Sharpe RJ: Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247:77–79, 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Sharpe RJ, Byers HR, Scott CF, Bauer SI, Maione TE: Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. J Nat Cancer Inst 82:848–853, 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Maione TE, Gray GS, Hunt AJ, Sharpe RJ: Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity. Cancer Res. 51:2077–2083, 1991.

    PubMed  CAS  Google Scholar 

  35. Andrade SP, Fan TP, Lewis GP: Quantitative in vivo studies on angiogenesis in a rat sponge model. Br J Exp Pathol 68:755–766, 1987.

    PubMed  CAS  Google Scholar 

  36. Cozzolino F, Torcia M, Aldinucci D, Ziche M, Almerigogna F, Bani D, Stern DM: Interleukin 1 is an autocrine regulator of human endothelial cell growth. Proc Natl Acad Sci USA 87:6487–6491, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Sidky YA, Borden EC: Inhibition of angiogenesis by interferons: Effects on tumor-and lymphocyte-induced vascular responses. Cancer Res 47:5155–5161, 1987.

    PubMed  CAS  Google Scholar 

  38. Arensman RM, Stolar CJH: Vitamin A effect on tumor angiogenesis. J Pediatr Surg 14:809–813, 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Oikawa T, Hirotani K, Nakamura O, Shudo K, Hiragun A, Iwaguchi T: A highly potent antiangiogenic activity of retinoids. Cancer Lett 48:157–162, 1989.

    Article  PubMed  CAS  Google Scholar 

  40. Ingber D, Folkman J: Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 59:44–51, 1988.

    PubMed  CAS  Google Scholar 

  41. Tamargo RJ, Leong KW, Brem H: Growth inhibition of 9L glioma using polymers to release heparin and cortisone acetate. J Neuro-Oncol 9:131–138, 1990.

    Article  CAS  Google Scholar 

  42. Moses MA, Sudhalter J, Langer R: Identification of an inhibitor of neovascularization from cartilage. Science 248:1408–14100, 1990.

    Article  PubMed  CAS  Google Scholar 

  43. Shapiro R, Vallee BL: Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc Natl Acad Sci USA 84:2238–2241, 1987.

    Article  PubMed  CAS  Google Scholar 

  44. Grant DS, Tashiro K-I, Segui-Real B, Yamada Y, Martin GR, Kleinman HK: Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933–943, 1989.

    Article  PubMed  CAS  Google Scholar 

  45. Sakamoto N, Iwahana M, Tanaka NG, Osada Y: Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res 51:903–906, 1991.

    PubMed  CAS  Google Scholar 

  46. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP: A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87:6624–6628, 1990.

    Article  PubMed  CAS  Google Scholar 

  47. Vlodavsky I, Michaeli RI, Bar-Ner M, Fridman R, Horowitz AT, Fuks Z, Biran S: Involvement of heparanase in tumor metastasis and angiogenesis. Isr J Med Sci 24:464–470, 1988.

    PubMed  CAS  Google Scholar 

  48. Dvorak HF: Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659, 1986.

    Article  PubMed  CAS  Google Scholar 

  49. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6, 1990.

    Article  PubMed  CAS  Google Scholar 

  50. Weiss L, Orr FW, Honn KV: Interactions between cancer cells and the microvasculature: A rate-regulator for metastasis. Clin Exp Metastasis 7:127–167, 1989.

    Article  PubMed  CAS  Google Scholar 

  51. Weiss L: Metastatic inefficiency. Adv Cancer Res 54:159–211, 1990.

    Article  PubMed  CAS  Google Scholar 

  52. Srivastava A, Laidler P, Davies RP, Horgan K, Hughes LE: The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0 mm thick) skin melanoma. Am J Pathol 133:419–423, 1988.

    PubMed  CAS  Google Scholar 

  53. Schor AM, Schor SL:Tumor angiogenesis. J Pathol 141:385–413, 1983.

    Article  PubMed  CAS  Google Scholar 

  54. Folkman J: Tumor angiogenesis. Adv Cancer Res 43:175–203, 1985.

    Article  PubMed  CAS  Google Scholar 

  55. Folkman J, Klagsbrun M: Angiogenic factors. Science 235:442–447, 1987.

    Article  PubMed  CAS  Google Scholar 

  56. Presta M, Rifkin DB: New aspects of blood vessel growth: Tumor and tissue-derived angiogenesis factors. Haemostasis 18:6–17, 1988.

    PubMed  CAS  Google Scholar 

  57. Paweletz N, Knierim M:Tumor-related angiogenesis CRC. Crit Rev Oncol Hematol 9:197–242, 1989.

    Article  PubMed  CAS  Google Scholar 

  58. Polverini PJ, Leibovich SJ: Effect of macrophage depletion on growth and neovascularization of hamster buccal pouch carcinomas. J Oral Pathol 16:436–441, 1987.

    Article  PubMed  CAS  Google Scholar 

  59. Starkey JR, Crowle PK, Taubenberger S: Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42:48–52, 1988.

    Article  PubMed  CAS  Google Scholar 

  60. Welch DR, Schissel DJ, Howrey RP, Aeed PA: Tumor-elicited polymorphonuclear cells, in contrast to ‘normal’ circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc Natl Acad Sci USA 86:5859–5863, 1989.

    Article  PubMed  CAS  Google Scholar 

  61. Rastinejad F, Polverini PJ, Bouck N: Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56:345–355, 1989.

    Article  PubMed  CAS  Google Scholar 

  62. Briozzo P, Badet J, Capony F, Pieri I, Montcourrier P, Barritault D, Rochefort H: MCF7 mammary cancer cells respond to bFGF and internalize it following its release from extracellular matrix: A permissive role of cathepsin D. Exp Cell Res 194:252–259, 1991.

    Article  PubMed  CAS  Google Scholar 

  63. Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, Podhajter OL, Chenard MP, Rio MC, Chambon P: A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature 348:699–704, 1990.

    Article  PubMed  CAS  Google Scholar 

  64. van den Hooff A: Stromal involvement in malignant growth. Adv Cancer Res 50:159–196, 1988.

    Article  PubMed  Google Scholar 

  65. van den Hooff A:The role of stromal cells in tumor metastasis: A new link. Cancer Cells 3:186–187, 1991.

    PubMed  Google Scholar 

  66. Moroco JR, Solt DB, Polverini PJ: Sequential loss of suppressor genes for three specific functions during in vivo carcinogenesis. Lab Invest 63:298–306, 1990.

    PubMed  CAS  Google Scholar 

  67. Heidaran MA, Fleming TP, Bottaro DP, Bell GI, Di Fiore PP, Aaronson SA: Transformation of NIH3T3 fibroblasts by an expression vector for the human epidermal growth factor precursor. Oncogene 5:1265–1270, 1990.

    PubMed  CAS  Google Scholar 

  68. Rosenthal A, Lindquist PB, Bringman TS, Goeddel DV, Derynck R: Expression in rat fibroblasts of a human transforming growth factor-a cDNA results in transformation. Cell 46:301–309, 1986.

    Article  PubMed  CAS  Google Scholar 

  69. Derynck R: Transforming growth factor a. Cell 54:593–595, 1988.

    Article  PubMed  CAS  Google Scholar 

  70. McGeady ML, Kerby S, Shankar V, Ciardiello F, Salomon D, Seidman M: Infection with a TGF-a retroviral vector transforms normal mouse mammary epithelial cells but not normal rat fibroblasts. Oncogene 4:1375–1382, 1989.

    PubMed  CAS  Google Scholar 

  71. Thomas KA: Transforming potential of fibroblast growth factor genes. Trends Biochem Sci 13:327–328, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Goldfarb M: The fibroblast growth factor family. Cell Growth Differ 1:439–445, 1990.

    PubMed  CAS  Google Scholar 

  73. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D: Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66:1095–1104, 1991.

    Article  PubMed  CAS  Google Scholar 

  74. Rogelj S, Weinberg RA, Fanning P, Klagsbrun M: Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 331:173–175, 1988.

    Article  PubMed  CAS  Google Scholar 

  75. Kallinowski F, Wilkerson R, Moore R, Strauss W, Vaupel P: Vascularity, perfusion rate and local tissue oxygenation of tumors derived from ras-transformed fibroblasts. Int J Cancer 48:121–127, 1991.

    Article  PubMed  CAS  Google Scholar 

  76. Thompson TC, Southgate J, Kitchener G, Land H: Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56:917–930, 1989.

    Article  PubMed  CAS  Google Scholar 

  77. Alonso T, Morgan RO, Marvizon JC, Zarbl H, Santos E: Maligant transformation by ras and other oncogenes produces common alterations in inositol phospholipid signaling pathways. Proc Natl Acad Sci USA 85:4271–4275, 1988.

    Article  PubMed  CAS  Google Scholar 

  78. Barker K, Aderem A, Hanafusa H: Modulation of arachidonic acid metabolism by Rous sarcoma virus. J Virol 63:2929–2935, 1989.

    PubMed  CAS  Google Scholar 

  79. Han J, Sadowski H, Young DA, Macara IG: Persistent induction of cyclooxygenase in p60v-src-transformed 3T3 fibroblasts. Proc Natl Acad Sci USA 87:3373–3377, 1990.

    Article  PubMed  CAS  Google Scholar 

  80. Xie W, Chipman JG, Robertson DL, Erikson RL, Simmons DL: Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA 88:2692–2696, 1991.

    Article  PubMed  CAS  Google Scholar 

  81. Berkenpas MB, Quigley JP: Transformation-dependent activation of urokinase-type plasminogen activator by a plasmin-independent mechanism: Involvement of cell surface membranes. Proc Natl Acad Sci USA 88:7768–7772, 1991.

    Article  PubMed  CAS  Google Scholar 

  82. Vogt PK, Bos TJ: jun: Oncogene and transcription factor. Adv Cancer Res 55:1–35, 1990.

    Article  PubMed  CAS  Google Scholar 

  83. Schweigerer L, Schwab M, Fotsis T: Endothelial cell growth factors in human neuroblastoma cells transfected with the human mycn oncogene. Abstract 121, International Symposium on Angiogenesis, St. Gallen, Switzerland, 1991.

    Google Scholar 

  84. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D:Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Eng J Med 313:1111–1116, 1985.

    Article  CAS  Google Scholar 

  85. Montesano R, Pepper MS, Mohle-Steinlein U, Risau W, Wagner EF, Orci L: Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62:435–445, 1990.

    Article  PubMed  CAS  Google Scholar 

  86. Wagner EF: On transferring genes into stem cells and mice. EMBO J 9:3024–3032, 1990.

    PubMed  CAS  Google Scholar 

  87. Folkman J, Watson K, Ingber D, Hanahan D:Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61, 1989.

    Article  PubMed  CAS  Google Scholar 

  88. Hanahan D: Dissecting multistep tumorigenesis in transgenic mice. Ann Rev Genet 22:479–519, 1988.

    Article  PubMed  CAS  Google Scholar 

  89. Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ: Wounding and its role in RSV-mediated tumor formation. Science 230:676–678, 1985.

    Article  PubMed  CAS  Google Scholar 

  90. Schuh AC, Keating SJ, Monteclaro FS, Vogt PK, Breitman ML: Obligatory wounding requirement for tumorigenesis in v-jun transgenic mice. Nature 346:756–760, 1990.

    Article  PubMed  CAS  Google Scholar 

  91. Sheela S, Riccardi VM, Ratner N: Angiogenic and invasive properties of neurofibroma Schwann cells. J Cell Biol 111:645–653, 1990.

    Article  PubMed  CAS  Google Scholar 

  92. Bader SA, Fasching C, Brodeur GM, Stanbridge EJ: Dissociation of suppression of tumorigenicity and differentiation in vitro effected by transfer of single human chromosomes into human neuroblastoma cells. Cell Growth Differ 2:245–255, 1991.

    PubMed  CAS  Google Scholar 

  93. Huang H-JS, Yee J-K, Shew J-Y, Chen P-L, Bookstein R, Friedmann T, Lee EY-HP, Lee W-H: Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242:1563–1566, 1988.

    Article  PubMed  CAS  Google Scholar 

  94. Santhanam U, Ray A, Sehgal PB: Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. Proc Natl Acad Sci USA 88:7605–7609, 1991.

    Article  PubMed  CAS  Google Scholar 

  95. Motro B, Itin A, Sachs L, Keshet E: Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc Natl Acad Sci USA 87:3092–3096, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bouck, N. (1993). Angiogenesis: A mechanism by which oncogenes and tumor suppressor genes regulate tumorigenesis. In: Benz, C.C., Liu, E.T. (eds) Oncogenes and Tumor Suppressor Genes in Human Malignancies. Cancer Treatment and Research, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3088-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3088-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6349-1

  • Online ISBN: 978-1-4615-3088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics