Skip to main content

Fos and Jun: Inducible transcription factors regulating growth of normal and transformed cells

  • Chapter
Oncogenes and Tumor Suppressor Genes in Human Malignancies

Part of the book series: Cancer Treatment and Research ((CTAR,volume 63))

Abstract

Although the study of oncogenes has provided some useful insights into cancer mechanisms, the most important benefit from oncogene research has been the delineation of the growth factor response pathway and molecular characterization of important cellular processes. The nuclear proto-oncogenes c-fos and c-jun have been particularly useful in this regard. Their study has provided important information about gene regulation in response to growth factors, regulation of immediate early genes, and the function and interaction of transcription factors. This chapter will describe (1) the expression and function of these cellular proto-oncogenes as ’immediate early’ genes, (2) interactions between Fos, Jun, and other transcription factors, (3) distinct transcriptional effects of Fos, and (4) how mutation and/or overexpression of these oncogenes alters their transcriptional effects and carcinogenic potential, and (5) the potential role of these proteins in human tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nishizawa M, Goto N, Kawai S: An avian transforming retrovirus isolated from a nephroblastoma that carries the fos gene as the oncogene. J Virol 61:3733–3740, 1987.

    PubMed  CAS  Google Scholar 

  2. Van Beveren C, van Straaten F, Curran T, Muller R, Verma IM: Analysis of FBJ-MuSV provirus and c-fos (mouse) gene reveals that viral and cellular fos gene products have different carboxy termini. Cell 32:1241–1255, 1983.

    Article  Google Scholar 

  3. Verma IM, Sassone-Corsi P: The c-fos protooncogene. Cell 51:513–514, 1988.

    Article  Google Scholar 

  4. Ward JM, Young DM: Histogenesis and morphology or periosteal sarcomas induced by FBJ virus in NIH swiss mice.

    Google Scholar 

  5. Curran T, VanBeveren C, Ling N, Verma IM: Viral and cellular fos proteins are complexed with a 39,000 dalton cellular protein. Mol Cell Biol 5:167–172, 1985.

    PubMed  CAS  Google Scholar 

  6. Sassone-Corsi P, Lamph WW, Kamps M, Verma IM: Fos associated cellular p39 is related to nuclear transcription factor AP-1. Cell 54:553–560, 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Maki Y, Bos TJ, Davis C, Starbuck M, Vogt PK: Avian sarcoma virus 17 carries the jun oncogene. Proc Natl Acad Sci USA 84:2848–2852, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Landshulz, Johnson PF, McKnight SL: The leucine zipper: A hypothetical structure common to a new class of DNA binding protein. Nature 240:1759–1764, 1988.

    Google Scholar 

  9. Cohen DR, Curran T: Fra-1: A serum-inducible cellular immediate early gene that encodes a fos-related antigen. Mol Cell Biol 8:2063–2069, 1988.

    PubMed  CAS  Google Scholar 

  10. Dobrzanski P, Noguchi T, Kovary K, Rizzo CA, Lazo PS, Bravo R: Both products of the fosB gene, FosB and its short form, FosB/SF, are transcriptional activators in fibroblasts. Mol Cell Biol 11:5470–5478, 1991.

    CAS  Google Scholar 

  11. Franza RB, Jr., Rauscher III FJ, Josephs SF, Curran T: The fos complex and fos-related antigens recognize sequence elements that contain AP-1 binding sites. Science 239:1150–1153, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Sassone-Corsi P, Sisson JC, Verma IM: Transcriptional autoregulation of the protooncogene fos. Nature 334:314–319, 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Yen J, Wisdom RM, Tratner I, Verma IM: An alternatively spliced form of FosB is a negative regulator of transcriptional activation and transformation by Fos proteins. Proc Natl Acad Sci USA 88:5077–5081, 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Nakabeppu Y, Ryder K, Nathans D: DNA binding activities of three murine jun proteins: Stimulation by fos. Cell 55:907–915, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Benbrook DM, Jones NC: Heterodimer formation between CREB and Jun proteins. Oncogene 5:295–302, 1990.

    PubMed  CAS  Google Scholar 

  16. Hai T, Curran T: Cross-family dimerization of transcription factors Fos/Jun and ATF/ CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88:3720–3724, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Macgregor PF, Abate C, Curran T: Direct cloning of leucine zipper proteins: Jun binds cooperatively to the CRE with CRE-BP1. Oncogene 5:451–458, 1990.

    PubMed  CAS  Google Scholar 

  18. Ivashkiv JB, Liou H-C, Kara CJ, Lamph WW, Verma IM, Glimcher LH: mXBP/CRE-Bp2 and c-Jun form a complex which binds to the cyclin AMP, but not to the 12-O-tetradecanoylphorbol-13-acetate, response element. Mol Cell Biol 10:1609–1621, 1990.

    PubMed  CAS  Google Scholar 

  19. Nakabeppu Y, Nathans D: A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity. Cell 64:751–759, 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Harrison SC: A structural taxonomy of DNA-binding domains. Nature 353:715–719,1991.

    Article  PubMed  CAS  Google Scholar 

  21. Greenberg ME, Ziff EB: Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 311:433–438, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Greenberg ME, Hermanowski AL, Ziff EB: Effect of protein synthesis inhibitors on growth factor activation of c-fos, c-myc, and actin gene transcription. Mol Cell Biol 6:1050–1057, 1986.

    PubMed  CAS  Google Scholar 

  23. Lau LF, Nathans D: Expression of a set of growth related immediate early genes in Balbc/3T3 cells: Coordinate regulation with c-fos or c-myc. Proc Natl Acad Sci USA 80:4271–4275, 1987.

    Google Scholar 

  24. Almendral JM, Sommer D, MacDonald-Bravo H, Burckhardt J, Perera J, Bravo, R: Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol Cell Biol 8:2140–2148, 1988.

    PubMed  CAS  Google Scholar 

  25. Chavirer P, Janssen-Timmen U, Mattei M-G, Zerial M, Bravo R, Charnay P: Structure, chromosome location, and expression of the mouse sine-finger gene Krox-20: Multiple gene products and coregulation with the proto-oncogene c-fos. Mol Cell Biol 9:787–797, 1989.

    Google Scholar 

  26. Herrera RE, Shaw PE, Nordheim A: Occupation of the c-fos serum response element in vivo by a multi-protein complex is unaltered by growth factor induction. Nature 340:68–70, 1989.

    Article  PubMed  CAS  Google Scholar 

  27. Norman C, Runswick M, Pollock R, Treisman R: Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989–1003, 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Binetruy B, Smeal T, Karin M: Ha-ras augments c-jun activity and stimulates phosphorylation of its activation domain. Nature 351:122–127, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. Jackson JA, Holt JT, Pledger WJ: Continuous exposure to PDGF is required for growth induction: Correlation with post-translational stability of Fos. J Biol Chem 267:17444–17448, 1992.

    PubMed  CAS  Google Scholar 

  30. Rusack B, Robertson H, Wisden W, Hunt S: Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–1239, 1990.

    Article  Google Scholar 

  31. Holt JT, Gopal TV, Moulton AD, Nienhuis AW: Inducible production of c-fos anti-sense RNA inhibits 3T3 cell proliferation. Proc Natl Acad Sci USA 83:4794–4798, 1986.

    Article  PubMed  CAS  Google Scholar 

  32. Holt JT, Nienhuis AW: c-fos proto-oncogene expression is necessary for normal growth of mouse 3T3 cells. UCLA Symp Mol Cell Biol 51:313–320, 1988.

    Google Scholar 

  33. Holt JT: Growth inhibition by antisense nucleic acids. In: Brakel C (ed): Discoveries in Antisense Nucleic Acids, Vol. 20, Gulf Press, 1989, pp 81–94.

    Google Scholar 

  34. Kerr LD, Holt JT, Matrisian LM: Growth factors regulate transin gene expression by c-fos dependent and c-fos independent pathways. Science 242:1424–1427, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Kim S-J, Denhez F, Kim K-Y, Holt JT, Sporn MB, Roberts AB: Activation of the second promoter of the TGF-betal gene by TGF-betal and phorbol ester occurs through the same target sequences. J Biol Chem 264:19373–19378, 1989.

    PubMed  CAS  Google Scholar 

  36. Nishikura K, Murray JM: Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiescent 3T3 cells. Mol Cell Biol 7:639–649, 1987.

    PubMed  CAS  Google Scholar 

  37. Riabowol KT, Vosatka RJ, Ziff EB, Lamb NJ, Feramisco JR: Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells. Mol Cell Biol 8:1670–1676, 1988.

    PubMed  CAS  Google Scholar 

  38. Schonthal A, Herrlich P, Rahmsdorf, Ponta H: Requirement for fos gene expression in the transcriptional activation of collagenase by other oncogenes and phorbol esters. Cell 54:325–334, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Angel P, Allegretto EA, Okino S, Hattori K, Boyle WK, Hunter T, Karin M: The jun oncogene encodes a sequence-specific transactivator similar to AP-1. Nature 332:166–171, 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Bohmann D, Bos TJ, Admon A, Nishimura T, Vogt PK, Tjian R: Human protoncogene c-jun encodes a DNA-binding protein with structural and functional properties of transcription factor AP-1. Science 238:1386–1392, 1987.

    Article  PubMed  CAS  Google Scholar 

  41. Chiu R, Boyle WJ, Meek J, Smeal T, Hunter T, Karin M: The c-fos protein interacts with c-jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54:541–552, 1988.

    Article  PubMed  CAS  Google Scholar 

  42. Rauscher FJ, III, Sambucetti LC, Curran T, Distel RJ, Speigelman BM: Common DNA binding site for fos protein complexes and transcription factor AP-1. Cell 52:471–480, 1988.

    Article  PubMed  CAS  Google Scholar 

  43. Angel P, Imagawa M, Chiu R, Stein B, Imbra TJ, Rahmsdorf HJ, Jonat C, Herrlich P, Karin M: Phorbol ester inducible genes contain a common cis element recognized by a TPA-modulated transacting factor. Cell 49:729–739, 1987.

    Article  PubMed  CAS  Google Scholar 

  44. Lee W, Mitchell P, Tjian R: Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49:741–752, 1987.

    Article  PubMed  CAS  Google Scholar 

  45. Hope IA, Struhl K: GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J 6:2781–2784, 1987.

    PubMed  CAS  Google Scholar 

  46. Wilson T, Treisman R: Fos C-terminal mutations block downregulation of c-fos transcription following serum stimulation. EMBO J 7:4193–4202, 1988.

    PubMed  CAS  Google Scholar 

  47. Distel RJ, Ro HS, Rosen BS, Groves DL, Spiegelman BM: Nucleoprotein complexes that regulate gene expression in adipocyte differentiation: Direct participation of c-fos. Cell 49:835–844, 1987.

    Article  PubMed  CAS  Google Scholar 

  48. Kerr LD, Miller DB, Matrisian LM: TGF-beta inhibition of transin/stromyelysin gene expression is mediated through a Fos binding sequence. Cell 61:267–278, 1990.

    Article  PubMed  CAS  Google Scholar 

  49. Sassone-Corsi P, Ransone LJ, Lamph WW, Verma IM: Direct interactions between fos and jun nuclear oncopproteins: Role of the leucine zipper domain. Nature 336:690–692, 1988.

    Article  Google Scholar 

  50. Sonnenberg JL, Rauscher III FJ, Morgan JI, Curran T: Regulation of proenkephalin by Fos and Jun. Science 246:1622–1625.

    Google Scholar 

  51. O’Shea EK, Rutkowski R, Kim PS: Evidence that the leucine zipper is a coiled coil. Science 243:538–542, 1989.0

    Article  CAS  Google Scholar 

  52. Halazonetis TD, Goergopoulos K, Greenberg ME, Leder P: C-jun dimerizes with itself and with c-fos forming complexes of different DNA binding affinities. Cell 55:917–924, 1988.

    Article  PubMed  CAS  Google Scholar 

  53. Kamata N, Jotte R, Holt JT: Myristylation alters DNA binding and transactivation of FBR (gag-fos) protein. Mol Cell Biol 11:765–772, 1991.

    PubMed  CAS  Google Scholar 

  54. Kouzarides T, Ziff E: The role of the leucine zipper in the fos-jun interaction. Nature 336:646–651, 1988.

    Article  PubMed  CAS  Google Scholar 

  55. Melton DA, Krieg DA, Rebagliati MR, Flaniatis T, Zinn K, Green MR: SP6 RNA polymerase. Nucleic Acid Res 12:7035–7056, 1984.

    Article  PubMed  CAS  Google Scholar 

  56. Neuberg M, Schuermann M, Humter JB, Muller R: Two functionally different regions in fos are required for the sequence-specific DNA interaction of the fos/jun complex. Nature 338:589–590, 1989.

    Article  PubMed  CAS  Google Scholar 

  57. Rauscher FJ, III, Voulalas PJ, Franza BR, Curran T: Fos and jun bind cooperatively to the AP-1 site: Reconstitution in vitro. Genes Dev 2:1687–1699, 1988.

    Article  PubMed  CAS  Google Scholar 

  58. Gentz R, Rauscher FJ, III, Abate C, Curran T: Parallel Association of fos and jun leucine zippers juxtaposes DNA binding domains. Science 243:1695–1699, 1989.

    Article  PubMed  CAS  Google Scholar 

  59. Schuerman M, Neuberg M, Hunter JB, Jenuwein T, Ryseck RP, Bravo R, Muller R: The leucine repeat motif in fos protein mediates complex formation with jun/AP-1 and is required for transformation. Cell 56:507–516, 1989.

    Article  Google Scholar 

  60. Struhl K: The DNA binding domain of the jun oncoprotein and the yeast GCN4 transcriptional activator are functionally homologous. Cell 50:841–846, 1987.

    Article  PubMed  CAS  Google Scholar 

  61. Turner R, Tjian R: Leucine repeats and an adjacent DNA binding domain mediate the formation of functional c-fos c-jun heterodimers. Science 243:1689–1694, 1989.

    Article  PubMed  CAS  Google Scholar 

  62. Abate C, Patel L, Rauscher FJ, III, Curran T: Redox regulation of Fos and Jun DNA binding activity in vitro. Science 249:1157–1161, 1990.

    Article  PubMed  CAS  Google Scholar 

  63. Baichwal VR, Park A, Tjian R: v-src and EK ras alleviate repression of c-jun by a cell-specific inhibitor. Nature 352:165–168, 1991.

    Article  PubMed  CAS  Google Scholar 

  64. Bohman D, Tjian R: Biochemical analysis of transcriptional activation by Jun: Differential activity of c-and v-Jun. Cell 59:709–717, 1989.

    Article  Google Scholar 

  65. Auwerx J, Sassone-Corsi P: IP-1: A dominant inhibitor of Fos/Jun whose activity is modulated by phosphorylation. Cell 64:983–993, 1991.

    Article  PubMed  CAS  Google Scholar 

  66. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR: Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element. Science 249:1266–1272, 1990.

    Article  PubMed  CAS  Google Scholar 

  67. Jonat G, Rahmsdorf HJ, Park KK, Cato ACB, Gebel S, Ponta H, Herrlich P: Antitumor promotion and antinflammation: Downmodulation of AP-1 (Fos-Jun) activity by glucocorticoid hormone. Cell 62:1189–1204, 1990.

    Article  PubMed  CAS  Google Scholar 

  68. Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, Karin M: Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62:1205–1215, 1990.

    Article  PubMed  CAS  Google Scholar 

  69. Gius D, Cao X, Rauscher FJ, III, Cohen DR, Curran T, Sukhatme VP: Transcriptional activation and repression by Fos are independent functions: The C terminus represses immediate early gene expression via CarG elements. Mol Cell Biol 10:4243–4255, 1990.

    PubMed  CAS  Google Scholar 

  70. Kamata N, Holt JT: Inhibitory effect of myristylation on transrepression by FBR (gag-fos) protein. Mol Cell Biol 12:876–882, 1992.

    PubMed  CAS  Google Scholar 

  71. Lucibello FC, Lowag C, Neuberg M, Muller R: Transrepression of the mouse c-fos promoter: A novel mechanism of fos-mediated trans-regulation. Cell 49:741–752, 1989.

    Google Scholar 

  72. Ofir R, Dwarki VJ, Rashid D, Verma IM: Phosphorylation of the C-terminus of Fos protein is required for transcriptional transrepression of the c-fos promoter. Nature 348:80–82, 1990.

    Article  PubMed  CAS  Google Scholar 

  73. Robinson-Benion C, Kamata N, Holt JT: Antisense mapping of the c-fos promoter: Role of the serum response element. Antisense Res Dev 1:21–33, 1991.

    PubMed  CAS  Google Scholar 

  74. Schonthal A, Buscher M, Angel P, Rahmsdorf HJ, Ponta H, Hattori K, Chiu R, Karin M, Herrlich P: The fos and Jun/AP-1 proteins are involved in the downregulation of Fos transcription. Oncogene 4:629–636, 1989.

    PubMed  CAS  Google Scholar 

  75. Konig H, Ponta H, Rahmsdorf U, Buscher M, Schonthal A, Rahmsdorf HJ, Herrlich P: Autoregulation of fos: The dyad symmetry element as the major target of repression. EMBO J 8:25592–2566, 1989.

    Google Scholar 

  76. Rivera VM, Sheng M, Greenberg ME: The inner core of the serum response element mediates both the rapid induction and subsequent repression of c-fos transcription following serum stimulation. Genes Dev 4:255–268, 1990.

    Article  PubMed  CAS  Google Scholar 

  77. Deschamps J, Meijlink F, Verma IM: Identification of a transcriptional enhancer element upstream from the proto-oncogene fos. Science 230:1174–1177, 1985.

    Article  PubMed  CAS  Google Scholar 

  78. Treisman R: Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell 42:889–902, 1985.

    Article  PubMed  CAS  Google Scholar 

  79. Shaw PE, Frisch S, Nordheim A: Repression of c-fos transcription is mediated through p67SRF bound to the SRE. EMBO J 8:2567–2574, 1989.

    PubMed  CAS  Google Scholar 

  80. Gilman MZ, Wilson RN, Weinberg RA: Multiple protein binding sites in the 5′-flanking region regulate c-fos expression. Mol Cell Biol 6:4305–4315, 1986.

    PubMed  CAS  Google Scholar 

  81. Chiu R, Angel P, Karin M: JunB differs in its biological properties from and is a negative regulator of c-jun. Cell 59:979–986, 1989.

    Article  PubMed  CAS  Google Scholar 

  82. Schutte J, Viallet J, Nau M, Segal S, Fedorko J, Minna J: JunB inhibits and c-fos stimulates the transforming and transactivating activities of c-jun.

    Google Scholar 

  83. Meijlink F, Curran T, Miller AD, Verma IM: Removal of a 67 base pair sequence in the noncoding region of proto-oncogene fos converts it to a transforming gene. Proc Natl Acad Sci USA 82:4987–4991, 1985.

    Article  PubMed  CAS  Google Scholar 

  84. Schutte J, Minna JD, Birrer MJ: Deregulated expression of human c-jun transforms primary rat embryo cells in cooperation with an activated c-Ha-ras gene and transforms Rat-la cells as a single gene. Proc Natl Acad Sci USA 86:2257–2261, 1989.

    Article  PubMed  CAS  Google Scholar 

  85. Jotte RM, Kamata N, Holt JT: Manuscript in preparation.

    Google Scholar 

  86. Boyle WJ, Smeal T, Defize LHK, Angel P, Woodgett JR, Karin M, Hunter T: Activation of protein kinase C decreases phosphorylation of c-jun at sites that negatively regulate its DNA binding activity. Cell 64:573–584, 1991.

    Article  PubMed  CAS  Google Scholar 

  87. Pulverer BJ, Kryiakis JM, Avruch J, Nikolakaki E, Woodgett JR: Phosphorylation of c-jun mediated by MAP kinases. Nature 353:670–674, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holt, J. (1993). Fos and Jun: Inducible transcription factors regulating growth of normal and transformed cells. In: Benz, C.C., Liu, E.T. (eds) Oncogenes and Tumor Suppressor Genes in Human Malignancies. Cancer Treatment and Research, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3088-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3088-6_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6349-1

  • Online ISBN: 978-1-4615-3088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics