Skip to main content

Detection of minimal residual disease in ALL

  • Chapter
Leukemia: Advances in Research and Treatment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 64))

Abstract

Complete remission (CR) of acute leukemia is defined in clinical practice as the presence in the bone marrow of less than 5% blast cells, a level determined by the limits of reliable detection by morphology. Mathematical models predict that the level of residual disease during clinical remission could vary from 1010 leukemic cells following early remission induction to perhaps none in some patients at later stages of treatment [1]. The practical relevance of minimal residual disease (MRD) is in the relationship between the level of the residual tumor burden and the risk of relapse. The ability to detect and quantitate MRD in hematological malignancies and to relate this to relapse risk could potentially provide a means of monitoring the effectiveness of treatment and the basis for design of more stratified treatment protocols. It is, however, worth emphasizing that the detection of residual disease by sensitive techniques does not necessarily predict relapse. There are instances in the literature both of ‘clonal’ remissions [2] and stable persistence of residual disease during remission [3]. The large body of work on the influence of immune effector mechanisms in the control or elimination of residual disease provides a potential basis for some of these observations (see [4]). Clearly, prediction of relapse cannot be determined solely by the presence of a given burden of residual disease; assessment of a variety of additional parameters, including the viability and clonal nature of residual cells, is also necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hagenbeek A, Martens ACM (1991). Minimal residual disease in acute leukaemia: preclinical studies in a relevant rat model (BNML). Clin Haematol 4: 609–635.

    CAS  Google Scholar 

  2. Fialkow PJ, Singer JW, Raskind WH, Adamson JW, Jacobson RJ, Bernstein ID, Dow LW, Najfeld V, Veith R (1987). Clonal development, stem cell differentiation and clinical remissions in acute non-lymphocytic leukemia. N Engl J Med 317: 468–473.

    Article  PubMed  CAS  Google Scholar 

  3. Holt C, Arensen E, Carstens B, McGavren L (1989). Persistence of pseudodiploidy del (16q) in remission bone marrows of two children with acute lymphoblastic leukaemia. Proc Am Soc Clin Oncol 8: 218.

    Google Scholar 

  4. Brenner MK, Heslop HE (1991). Graft versus leukaemia effects after marrow transplantation in man. Clin Haematol 4: 727–749.

    CAS  Google Scholar 

  5. Pui CH, Crist WM, Look AT (1990). Biology and clinical significance of cytogenetic abnormalities in childhood acute lymphoblastic leukemia. Blood 76: 1449–1463.

    PubMed  CAS  Google Scholar 

  6. Yunis JJ, Brunning RD (1986). Prognostic significance of chromosomal abnormalities in acute leukaemias and myelodysplastic syndromes. Clinics Haematol 15: 597–620.

    CAS  Google Scholar 

  7. Williams DL, Harris A, Williams KJ, Brosius MJ, Lemonds W (1984). A direct bone marrow chromosome technique for acute lymphoblastic leukaemia. Cancer Genet Cytogenet 13: 239.

    Article  PubMed  CAS  Google Scholar 

  8. Heerema NA (1990). Cytogenetic abnormalities and molecular markers of acute lymphoblastic leukemia. Hematol Oncol Clinics North Am 4: 795–820.

    CAS  Google Scholar 

  9. Nowell P (1987). Molecular monitoring of pre-B acute lymphocytic leukemia. J Clin Oncol 5: 692–693.

    PubMed  CAS  Google Scholar 

  10. Pui CH, Raimondi SC, Behm FG, Ochs J, Furman WL, Bunin NJ, Ribeiro RL, Tinsley PA, Mirro J (1986). Shifts in blast cell phenotype and karyotype at relapse of childhood lymphoblastic leukemia. Blood 68: 1306–1310.

    PubMed  CAS  Google Scholar 

  11. Hittleman WN, Agbor P, Petokovic I, Andersson B, Kantarjian H, Walters R, Koller C, Beran M (1988). Detection of leukemic clone in vivo by premature chromosomal condensation. Blood 72: 1950–1960.

    Google Scholar 

  12. Gray JW, Kuo WL, Pinkel D (1991). Molecular cytometry applied to detection and characterization of disease-linked chromosome aberrations. Clin Haematol 4: 683–693.

    CAS  Google Scholar 

  13. Tkachuk D, Westbrook C, Andreeff M, Donlon TA, Cleary ML, Suranarayan K, Hounge M, Redner A, Gray J, Pinkel D (1990). Detection of the BCR-ABL fusion in chronic myelogenous leukemia by in situ hybridization. Science 250: 559–562.

    Article  PubMed  CAS  Google Scholar 

  14. Anastasi J, Vardiman JW, Rudinsky R, Patel M, Nachman J, Rubin CM, Le Beau MM (1991). Direct correlation of cytogenetic findings with cell morphology using in situ hybridisation: an analysis of suspicious cells in bone marrow specimens of two patients completing therapy for acute lymphoblastic leukamia. Blood 77: 2456–2462.

    PubMed  CAS  Google Scholar 

  15. Young BD (1990). Chromosome analysis and sorting. In Flow Cytometry—A Practical Approach, Ormerod MG (ed). Oxford University Press: Oxford.

    Google Scholar 

  16. Barlogie B, Raber MN, Schumann J, Johnson TS, Drewinko B, Swartzendruber DE, Gohde W, Andreef M, Freireich EJ (1983). Flow cytometry in clinical cancer research. Cancer Res 43: 3982–3988.

    PubMed  CAS  Google Scholar 

  17. Tsursawa M, Kaneko Y, Katano N, Niwa M, Ito M, Fujimoto T (1989). Flow cytometric evidence for minimal residual disease and cytological heterogeneities in acute lymphoblastic leukemia with severe hypodiploidy. Am J Hematol 32: 42–49.

    Article  Google Scholar 

  18. Wessmann M, Ruutu T, Volin L, Knuutila S (1989). In situ hybridization using a Y-specific probe—a sensitive method for distinguishing male recipient cells from female donor cells in bone marrow transplantation. Bone Marrow transplant 4: 283–286.

    Google Scholar 

  19. Lowenberg B, Touw IP (1991). Practical aspects and diagnostic significance of in vitro manipulation of progenitors in human acute myeloid and lymphoid leukaemia. Balliere’s Clin Haematol 4: 637–653.

    Article  CAS  Google Scholar 

  20. Estrov Z, Grunberger T, Dube ID, Wang YP, Freedman MH (1986). Detection of residual acute lymphoblastic leukemia cells in cultures of bone marrow obtained during remission. N Engl J Med 315: 538–542.

    Article  PubMed  CAS  Google Scholar 

  21. Miller CB, Zehnbauer BA, Piantadosi S, Rowley SD, Jones RJ (1991). Correlation of occult leukemia drug sensitivity with relapse after autologous bone marrow transplantation. Blood 78: 1125–1131.

    PubMed  CAS  Google Scholar 

  22. Uckun FM, Gajl-Peckalska K, Kersey JH, Houston LL, Vallera DA (1986). Use of a novel colony assay to evaluate the cytotoxicity of an immunotoxin containing pokeweed antiviral protein against blast progenitor cells freshly obtained from patients with common B-lineage acute lymphoblastic leukaemia. J Exp Med 163: 347–368.

    Article  PubMed  CAS  Google Scholar 

  23. Uckun FM, Gajl-Peckalska K, Meyers DE, Ramsay NC, Kersey JH, Colvin M, Vallera DA (1987). Marrow purging in autologous bone marrow transplantation for T lineage acute lymphoblastic leukaemia: Efficacy of ex vivo treatment with immunotoxins and 4-perhydroxycyclophosphamide against fresh leukaemic marrow progenitor cells. Blood 69: 361–366.

    PubMed  CAS  Google Scholar 

  24. Chang J, Morgenstern GR, Coutinho LH, Scarffe JH, Carr T, Deakin DP, Testa NG, Dexter TN (1989). The use of bone marrow cells grown in long term culture for autologous bone marrow transplantation in acute myeloid leukaemia: an update. Bone Marrow Transplant 4: 5–9.

    PubMed  CAS  Google Scholar 

  25. Chang J, Geary CG, Testa NG (1990). Long term damage after chemotherapy for acute myeloid leukaemia does not improve with time. Br J Haematol 75: 68–72.

    Article  PubMed  CAS  Google Scholar 

  26. Coulombel L, Eaves CJ, Kalousek D, Gupta C, Eaves AC (1985). Long term marrow culture from patients with acute myelogenous leukaemia: selection in favour of normal phenotypes in some but not all cases. J Clin Invest 75: 961–969.

    Article  PubMed  CAS  Google Scholar 

  27. Schiro R, Coutinho LH, Will A, et al. (1990). Growth of normal versus leukaemic bone marrow cells in long term culture from acute lymphoblastic and myeloblastic leukaemias. Blut 61: 267–270.

    Article  PubMed  CAS  Google Scholar 

  28. Fey MF, Kulozik AE, Hansen-Hagge TE, Tobler A (1991). The polymerase chain reaction: a new tool for detection of minimal residual disease in haematological malignancies. Eur J Cancer 27: 89–94.

    Article  PubMed  CAS  Google Scholar 

  29. Dubrovic A, Trainor KJ, Morley A A (1988). Detection of the molecular abnormality in chronic myeloid leukemia by the use of the polymerase chain reaction. Blood 72: 2063–2065.

    Google Scholar 

  30. Kawasaki ES, Clark SS, Coyne MY, Smith SD, Champlin R, Witte ON, McCormick FP (1988). Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro. Proc Natl Acad Sci USA 85: 5898–5702.

    Article  Google Scholar 

  31. Lee M-S, LeMaistre A, Kantarjian HM, Talpaz M, Freireich EJ, Trujillo JM, Stass SA (1989). Detection of two alternative bcr/abl mRNA junctions and minimal residual disease in Philadelphia chromosome positive chronic myelogenous leukemia by polymerase chain reaction. Blood 73: 2165–2170.

    PubMed  CAS  Google Scholar 

  32. Lee M-S, Chang K-S, Cabanillas F, Freireich EJ, Trujillo JM, Stass SA (1987). Detection of minimal residual cells carrying the t(14;18) by DNA sequence amplification. Science 237: 175–178.

    Article  PubMed  CAS  Google Scholar 

  33. Crescenzi M, Seto M, Herzig GP, Weiss PD, Griffith RC, Korsmeyer SJ (1988). Thermostable DNA polymerase chain amplification of t(14;18) chromosome breakpoints and detection of minimal residual disease. Proc Natl Acad Sci USA 85: 4869–4873.

    Article  PubMed  CAS  Google Scholar 

  34. Hunger SP, Galili N, Carroll AJ, Crist WM, Link MP, Cleary ML (1991). The t(1;19) (q23;pl3) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 77: 687–693.

    PubMed  CAS  Google Scholar 

  35. Jonsson OG, Kitchens RL, Baer RJ, Buchanan GR, Smith RG (1991). Rearrangements of the tal-1 locus as clonal markers for T cell acute lymphoblastic leukemia. J Clin Invest 87: 2029–2035.

    Article  PubMed  CAS  Google Scholar 

  36. Chang K-S, Lu J, Wang G, Trujillo JM, Estey E, Cork A, Chu D-T, Freirich EJ, Stass SA (1992). The t(15;17) breakpoint in acute promyelocytic leukemia cluster within two different sites of the myl gene: targets for the detection of minimal residual disease by the polymerase chain reaction. Blood 79: 554–558.

    PubMed  CAS  Google Scholar 

  37. Kagan J, Finger LR, Besa E, Croce CM (1990). Detection of minimal residual disease in leukemic patients with the t(10;14) (q24;qll) chromosomal translocation. Cancer Res 50: 5240–5244.

    PubMed  CAS  Google Scholar 

  38. Cheng JT, Ying-Chuan Yang C, Hernandez J, Embrey J, Baer R (1990). The chromosomal translocation (11;14) (pl3;qll) associated with T cell acute leukemia. J Exp Med 171: 489–501.

    Article  PubMed  CAS  Google Scholar 

  39. Boehm TLJ, Werle A, Ganser A, Kornhuber B, Drahovsky D (1987). T-cell receptor γ chain variable gene rearrangements in acute lymphoblastic leukemias of T and B cell lineage. Eur J Immunol 17: 1593–1597.

    Article  PubMed  CAS  Google Scholar 

  40. Yoffe G, Schneider N, Van Dyk L, Yang Y-C, Siciliano M, Buchanan G. Capra JD, Baer R (1989). The chromosome translocation (11;14) (pl3;qll) associated with T-cell acute lymphocytic leukemia: an Ilpl3 breakpoint cluster region. Blood 74: 374–379.

    PubMed  CAS  Google Scholar 

  41. Tycko B, Reynolds TC, Smith SD, Sklar J (1989). Consistent breakage between consensus recombinase heptamers of chromosome 9 DNA in a recurrent chromosomal translocation of human T cell leukemia. J Exp Med 169: 369–377.

    Article  PubMed  CAS  Google Scholar 

  42. Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G, Baer R (1990). Site specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J 9: 3343–3351.

    PubMed  CAS  Google Scholar 

  43. Apian PD, Lombardi DP, Ginsberg AM, Cossman J, Bertness VL, Kirsh IR (1990). Disruption of the human SCL locus by ‘illegimate’ V(D)J recombinase activity. Science 250: 1426–1429.

    Article  Google Scholar 

  44. Halaska FG, Finver S, Tsujimoto Y, Croce CM (1986). The t(8;14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V-D-J joining. Nature 324: 158–161.

    Article  Google Scholar 

  45. Raimondi SC, Behm FG, Roberson PK, Pui C-H, Rivera GK, Murphy SB, Williams DL (1988). Cytogenetics of childhood T-cell leukemia. Blood 72: 1560–1566.

    PubMed  CAS  Google Scholar 

  46. Shiramizu B, Magrath I (1990). Localisation of breakpoints by polymerase chain reactions in Burkitt’s lymphoma with 8;14 translocations. Blood 75: 1848–1852.

    PubMed  CAS  Google Scholar 

  47. Shiramazu B, Barriga F, Neequaye J, Jafri A, Dalla Favera R, Neri A, Guttierez M, Levine P, Magrath I (1991). Patterns of chromosomal breakpoint locations in Burkitt’s Lymphoma: relevance to geography and Epstein-Barr virus association. Blood 77: 1516–1526.

    Google Scholar 

  48. Maurer J, Janssen JWG, Thiel E, Van Denderen J, Ludwig W-D, Aydemir U, Heinze B, Fonatsch C, Harbolt J, Reiter A, Riehm H, Hoelzer D, Bartram CR (1991). Detection of chimeric BCR-ABL genes in acute lymphoblastic leukaemia by polymerase chain reaction: frequency and clinical relevance. Lancet 337: 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  49. van Dongen JJM, Breit TM, Adriaansen HJ, Beishuizen A, Hooijkaas H (1992). Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia 6(Suppl 1): 47–59.

    PubMed  Google Scholar 

  50. Crist WM, Carroll AJ, Shuster JJ, Behm FG, Whitehead M, Vietti TJ, Look AT, Mahoney D, Ragab A, Pullen DJ, Land VJ (1990). Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(l;19) (q23;pl3). A Pediatric Oncology Group Study. Blood 76: 117–122.

    PubMed  CAS  Google Scholar 

  51. Cannistra SA (1990). Chronic myelogenous leukemia as a model for the genetic basis of cancer. Hematol Oncol Clinic North Am 4: 337–357.

    CAS  Google Scholar 

  52. Kurzrock R, Shtalrid M, Romero P, Kloetzer WS, Talpas M, Trujillo JM, Blick M, Beran M, Gutterman JU (1987). A novel c-abl protein in Philadelphia positive acute lymphoblastic leukemia. Nature 325: 631–635.

    Article  PubMed  CAS  Google Scholar 

  53. Heisterkamp N, Knoppel E, Groffen J (1988). The first BCR gene intron contains breakpoints in Philadelphia positive leukemia. Nucleic Acids Res 16: 10069–10081.

    Article  PubMed  CAS  Google Scholar 

  54. Hooberman AL, Carrino JJ, Leibowitz D, Rowley JD, Le Beau MM, Arlin ZA, Westbrook CA (1989). Unexpected heterogeneity of BCR-ABL fusion mRNA detected by polymerase chain reaction in Philadelphia chromosome positive acute lymphoblastic leukemia. Proc Natl Acad Sci USA 86: 4259–4263.

    Article  PubMed  CAS  Google Scholar 

  55. Chen SJ, Chen Z, Hillion J, Grausz D, Loiseau P, Flandrin G, Berger R (1989). Ph’-positive, bcr-negative acute leukemias: clustering of breakpoints on chromosome 22 in the y end of BCR gene first intron. Blood 73: 1312–1315.

    PubMed  CAS  Google Scholar 

  56. Taylor JJ, Middleton PG (1991). The molecular genetic analysis of gene rearrangements in acute lymphoblastic leukaemia. Balliere’s Clin Haematol 4: 695–713.

    Article  CAS  Google Scholar 

  57. Roth MS, Antin JH, Bingham EL, Ginsburg D (1989). Detection of Philadelphia chromosome-positive cells by the polymerase chain reaction following bone marrow transplant for chronic myelogenous leukemia. Blood 72: 882–885.

    Google Scholar 

  58. Martiat P, Maisin D, Philippe M, Ferraut A, Michaux JL, Cassiman JJ, Van den Berghe H, Sokal G (1990). Detection of residual BCR/ABL transcripts in chronic myelogenous leukaemia patients in complete remission using the polymerase chain reaction and nested primers. Br J Haematol 75: 355–358.

    Article  PubMed  CAS  Google Scholar 

  59. Gabert J, Lafage M, Maraninchi D, Thuret I, Carcassonne Y, Mannoni P (1989). Detection of residual bcr/abl translocation by polymerase chain reaction in chronic myeloid leukemia patients after bone marrow transplantation. Lancet 2: 1125–1128.

    Article  PubMed  CAS  Google Scholar 

  60. Bartram CR, Janssen JWG, Schmidberger M, Lyons J, Arnold R (1989). Minimal residual leukemia in chronic myeloid leukemia patients after T-cell depleted bone-marrow transplantation. Lancet 1: 1260.

    Article  PubMed  CAS  Google Scholar 

  61. Lange W, Snyder DS, Castro R, Rossi JJ, Blume KG (1989). Detection of enzymatic amplification of bcr-abl mRNA in peripheral blood and bone marrow cells of patients with chronic myelogenous leukemia. Blood 73: 1735–1741.

    PubMed  CAS  Google Scholar 

  62. Pignon JM, Henni T, Amselem S, Vidaud M, Duquesnoy P, Vernant JP, Kuentz M, Cordonnier C, Rochant H, Goosens M (1990). Frequent detection of minimal residual disease by use of the polymerase chain reaction in long-term survivors after bone marrow transplantation for chronic myeloid leukemia. Leukemia 4: 83–86.

    PubMed  CAS  Google Scholar 

  63. Hughes TP, Morgan GJ, Martiat P, Goldman JM (1991). Detection of residual leukemia after bone marrow transplant for chronic myeloid leukemia: Role of the polymerase chain reaction in predicting relapse. Blood 77: 874–878.

    PubMed  CAS  Google Scholar 

  64. Sawyers CL, Timson L, Kawasaki ES, Clark SG, Witte ON, Champlin R (1990). Molecular relapse in chronic myelogenous leukemia patients after bone marrow transplantation detected by polymerase chain reaction. Proc Natl Acad Sci USA 87: 563–567.

    Article  PubMed  CAS  Google Scholar 

  65. Kohler S, Galili N, Sklar JL, Donion TA, Blume KG, Cleary ML (1990). Expression of bcr-abl fusion transcripts following bone marrow transplantation for Philadelphia chromosome-positive leukemia. Leukemia 4: 541–547.

    PubMed  CAS  Google Scholar 

  66. Delfau MH, Kerekaert JP, d’Hasghe MC, Fenaux P, Lai JL, Jouret JP, Grandchamp B (1990). Detection of minimal residual disease in chronic myeloid leukemia patients after bone marrow transplantation by polymerase chain reaction. Leukemia 4: 1–5.

    PubMed  CAS  Google Scholar 

  67. Thompson JD, Brodsky I, Yunis JJ (1992). Molecular quantification of residual disease in chronic myelogenous leukemia after bone marrow transplantation. Blood 79: 1629–1635.

    PubMed  CAS  Google Scholar 

  68. Morgan GJ, Janssen JWG, Guo A, Wiedemann LM, Hughes T, Gow J, Goldman JM, Bartram CR (1989). Polymerase chain reaction for detection of residual leukemia. Lancet 1: 928–929.

    Article  PubMed  CAS  Google Scholar 

  69. Gehly GB, Bryant EM, Lee AM, Kidd PG, Thomas ED (1991). Chimeric BCR-ABL mRNA as a marker for minimal residual disease in patients transplanted for Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood 78: 458–465.

    PubMed  CAS  Google Scholar 

  70. Miyamura K, Morishima Y, Tanimoto M, Saito H, Kojima S, Kodera Y, Mizutani S (1990). Prediction of clinical relapse after bone marrow transplantation by PCR for Philadelphia positive acute lymphoblastic leukaemia. Lancet 2: 874–890.

    Google Scholar 

  71. Miyamura K, Tanimoto M, Morishima Y, Horibe K, Yamamoto K, Akatsuka M, Kodera Y, Kojima S, Matsuyama K, Hirabayashi N, Yazaki M, Imai K, Onozawa Y, Kanamaru A, Mizutani S, Saito H (1992). Detection of Philadelphia chromosome positive acute lymphoblastic leukemia by polymerase chain reaction: possible eradication of minimal residual disease by marrow transplantation. Blood 79: 1366–1370.

    PubMed  CAS  Google Scholar 

  72. Carroll AJ, Crist WM, Link MP, Amylon MD, Pullen DJ, Ragab AH, Buchanan GR, Wimmer RS, Vietti TJ (1990). The t(l;14) (p34;qll) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: A Pediatric Oncology Group study. Blood 76: 1220–1224.

    PubMed  CAS  Google Scholar 

  73. Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J, Hershfield M, Haynes BF, Cohen DI, Waldmann TA, Kirsch IR (1989). Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA 86: 2031–2035.

    Article  PubMed  CAS  Google Scholar 

  74. Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA, Kirsch IR (1989). The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci USA 86: 10128–10132.

    Article  PubMed  CAS  Google Scholar 

  75. Finger LR, Kagan J, Christopher G, Kurtzberg J, Hershfield MS, Nowell PC, Croce CM (1989). Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc Natl Acad Sci USA 86: 5039–5043.

    Article  PubMed  CAS  Google Scholar 

  76. Chen O, Cheng J-T, Tsai L-H, Schneider N, Buchanan G, Carroll A, Crist W, Ozanne B, Siciliano MJ, Baer R (1990). The tal gene undergoes chromosomal translocation in T-cell leukemia and potentially encodes a helix-loop-helix protein. EMBO J 9: 415–424.

    PubMed  CAS  Google Scholar 

  77. Apian PD, Lombardi DP, Reaman GH, Sather HN, Hammond GD, Kirsch IR (1992). Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic leukemia. Blood 79: 1327–1333.

    Google Scholar 

  78. Raimondi SC, Behm FG, Robertson PK, Williams DL, Pui C-H, Crist WM, Look AT, Rivera GK (1990). Cytogenetics of pre-B acute lymphoblastic leukemia with emphasis on prognostic implications of the t(l;19). J Clin Oncol 8: 1380.

    PubMed  CAS  Google Scholar 

  79. Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD, Cleary ML (1990). Chromosomal translocation t(l;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60: 535–545.

    Article  PubMed  CAS  Google Scholar 

  80. Kamps MP, Murre C, Sun X, Baltimore D (1990). A new homeobox gene contributes the DNA binding domain of the t(l;19) translocation protein in Pre-B All. Cell 60: 547–555.

    Article  PubMed  CAS  Google Scholar 

  81. Mellentin JD, Murre CM, Donlon TA, McCaw PS, Smith SD, Carroll AJ, McDonald ME, Baltimore D, Cleary ML (1989). The gene for enhancer binding proteins E12/E47 lies at the t(l;19) breakpoint in acute leukemias. Science 246: 379–382.

    Article  PubMed  CAS  Google Scholar 

  82. Murre C, McCaw PS, Baltimore D (1989). A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD and myc proteins. Cell 56: 777–783.

    Article  PubMed  CAS  Google Scholar 

  83. Izraeli S, Lion T (1991). Multiprimer-PCR for screening of genetic abnormalities in acute lymphoblastic leukaemia. Br J Haematol 79: 645–647.

    Article  PubMed  CAS  Google Scholar 

  84. Alt FW, Blackwell TK, DePinho RA, Reth MG, Yancopoulos GD (1986). Regulation of genome rearrangement events during lymphocyte differentiation. Immunol Rev 89: 5–29.

    Article  PubMed  CAS  Google Scholar 

  85. van Dongen JJM, Wolvers-Tettero ILM (1991). Analysis of immunoglobulin and T cell receptor genes. Clin Chim Acta 198: 1–174.

    Article  PubMed  Google Scholar 

  86. Tonegawa S (1983). Somatic generation of antibody diversity. Nature 302: 575–581.

    Article  PubMed  CAS  Google Scholar 

  87. Rathbun G, Berman J, Yancopoulos G, Alt F (1989). Organization and expression of the mammalian heavy-chain variable region locus. In Immunoglobulin Genes, Honjo T, Alt FW, Rabbitts TH (eds). London: Academic Press, pp. 63–90.

    Google Scholar 

  88. Sanz I (1991). Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions. J Immunol 147: 1720–1729.

    PubMed  CAS  Google Scholar 

  89. Reth M, Gehrmann P, Petrac E, Wiese P (1986). A novel VH to VHDJH joining mechanism in heavy chain negative (null) pre-B cells results in heavy chain production. Nature 322: 840–842.

    Article  PubMed  CAS  Google Scholar 

  90. Maclntyre EA, d’Auriol L, Duparc N, Leverger G, Galibert F, Sigaux F (1990). Use of oligonucleotide probes directed against T cell antigen receptor gamma delta variable-(diversity)-joining junctional sequences as a general method for detecting minimal residual disease in acute lymphoblastic leukaemias. J Clin Invest 86: 2125–2135.

    Article  Google Scholar 

  91. Greisinger F, Younger PW, Kersey JH (1991). Organization of the T-cell receptor delta locus by delectional analysis of acute lymphoblastic leukemias and leukemic cell lines. Leukemia 5: 673–679.

    Google Scholar 

  92. Yano T, Pullman A, Andrade R, Uppenkamp M, De Villartay JP, Reaman G, Crush-Stanton S, Cohen DI, Raffeld M, Cossman J (1991). A common Vδ2-Dδ2-Dδ3 T cell receptor gene rearrangement in precursor B acute lymphoblastic leukaemia. Br J Haematol 79: 44–49.

    Article  PubMed  CAS  Google Scholar 

  93. Yokota S, Hansen-Hagge TE, Bartram CR (1991). T-cell receptor δ gene recombination in common acute lymphoblastic leukemia: preferential usage of Vδ2 and frequent involvement of the Jα cluster. Blood 77: 141–148.

    PubMed  CAS  Google Scholar 

  94. Foon KA, Todd RF (1986). Immunological classification of leukaemia and lymphoma. Blood 68: 1–31.

    PubMed  CAS  Google Scholar 

  95. Arnold A, Cossman J, Bakshi A, Jaffe ES, Waldmann TA, Korsmeyer SJ (1983). Immunoglobulin gene rearrangements as unique clonal markers in human lymphoid neoplasms. N Engl J Med 309: 1593–1599.

    Article  PubMed  CAS  Google Scholar 

  96. Korsmeyer SJ, Arnold A, Bakshi A, Ravetch JV, Siebenlist U, Hieter PA, Sharron SO, Lebien TW, Kersey JA, Poplack DG, Leder P, Waldman TA (1983). Immunoglobulin gene rearrangement and cell surface antigen expression in acute lymphocytic leukemia of T and B cell precursor origins. J Clin Invest 71: 301–313.

    Article  PubMed  CAS  Google Scholar 

  97. Boehm T, Buluwela L, Williams D, White L, Rabbitts TH (1988). A cluster of chromosome llpl3 translocations found via distinct D-D and D-D-J rearrangements of the human T cell receptor δ chain gene. EMBO J 7: 2011–2017.

    PubMed  CAS  Google Scholar 

  98. Chen Z, Font MP, Bories JC, Degos L, Lefranc MP, Sigaux F (1988). The human T-cell Vγ gene locus: Cloning of new segments and study of V rearrangements in neoplastic T and B cells. Blood 72: 776–783.

    PubMed  CAS  Google Scholar 

  99. Gonzalez-Sarmiento R, Greenberg JM, Kersey JH (1988). Use of γ chain variable regions in human acute lymphoblastic leukemia. Blood 72: 2038–2041.

    PubMed  CAS  Google Scholar 

  100. Hara J, Benedict SH, Yumura K, Ha-Kawa K, Gelfand EW (1989). Rearrangement of variable region T-cell receptor y genes in acute lymphoblastic leukemia. V gene usage differs in mature and immature T-cells. J Clin Invest 83: 1277–1283.

    Article  PubMed  CAS  Google Scholar 

  101. Biondi A, di Celle PF, Rossi V, Casorati G, Matullo G, Giudici G, Foa R, Migone N (1990). High prevalence of T-cell receptor Vδ2-(D)-Dδ3 or Dδ1/2-Dδ3 rearrangements in B-precursor acute lymphoblastic leukemias. Blood 75: 1834–1840.

    PubMed  CAS  Google Scholar 

  102. Yokota S, Hansen-Hagge TE, Ludwig W-D, Reiter A, Raghavachar A, Kleihauer E, Bartram CR (1991). Use of polymerase chain reactions to monitor minimal residual disease in acute lymphoblastic leukemia patients. Blood 77: 331–339.

    PubMed  CAS  Google Scholar 

  103. Loiseau P, Guglielmi P, Le Paslier D, Macintyre E, Gessain A, Bories JC, Flandrin G, Chen Z, Sigaux F (1989). Rearrangements of the T cell receptor 8 gene in T acute lymphoblastic leukemia cells are distinct from those occurring in B lineage acute lymphoblastic leukemia and preferentially involve one Vδ gene segment. J Immunol 142: 3305–3311.

    PubMed  CAS  Google Scholar 

  104. Wright JJ, Poplack DG, Bakshi A, Reaman G, Cole D, Jensen JP, Korsmeyer SJ (1987). Gene rearrangements as markers of clonal variation and minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 5: 735–741.

    PubMed  CAS  Google Scholar 

  105. Bregni M, Siena S, Neri A, Bassan R, Barbui T, Delia D, Bonadonna G, Dalla Favera R, Gianni AM (1989). Minimal residual disease in acute lympholastic leukemia detected by immune selection and gene rearrangement analysis. J Clin Oncol 7: 338–343.

    PubMed  CAS  Google Scholar 

  106. Zehnbauer BA, Pardoll DM, Burke PJ, Graham ML, Vogelstein B (1986). Immunoglobulin gene rearrangements in remission bone marrow specimens from patients with acute lymphoblastic leukemia. Blood 67: 835–838.

    PubMed  CAS  Google Scholar 

  107. Katz FE, Ball L, Gibbons B, Chessells J (1989). The use of DNA probes to monitor minimal residual disease in childhood acute lymphoblastic leukaemia. Br J Haematol 73: 173–180.

    Article  PubMed  CAS  Google Scholar 

  108. Deane M, Norton JD (1990). Immunoglobulin heavy chain variable region family usage is independent of tumour cell phenotype in human B lineage leukaemias. Eur J Immunol 20: 2209–2217.

    Article  PubMed  CAS  Google Scholar 

  109. McCarthy KP, Sloane JP, Wiedemann LM (1990). Rapid method for distinguishing clonal from polyclonal B cell populations in surgical biopsy specimens. J Clin Pathol 43: 429–432.

    Article  PubMed  CAS  Google Scholar 

  110. Deane M, McCarthy KP, Wiedemann LM, Norton JD (1991). An improved method for detection of B-lymphoid clonality by polymerase chain reaction. Leukemia 5: 726–730.

    PubMed  CAS  Google Scholar 

  111. Trainor KJ, Brisco MJ, Story CJ, Morley AA (1990). Monoclonality in B-lymphoproliferative disorders detected at the DNA level. Blood 75: 2220–2222.

    PubMed  CAS  Google Scholar 

  112. Taylor JJ, Rowe D, Williamson IK, Christmas SI, Proctor SJ, Middleton PG (1991). Detection of T-cell receptor y chain V gene rearrangements using the polymerase chain reaction: application to the study of clonal disease cells in acute lymphoblastic leukemia. Blood 77: 1989–1995.

    PubMed  CAS  Google Scholar 

  113. Bourguin A, Tung R, Galili N, Sklar J (1990). Rapid, nonradioactive detection of clonal T-cell receptor gene rearrangements in lymphoid neoplasms. Proc Natl Acad Sci USA 87: 8536–8540.

    Article  PubMed  CAS  Google Scholar 

  114. d’Auriol L, Macintyre E, Galibert F, Sigaux F (1989). In vitro amplification of T cell y gene rearrangements: a new tool for the assessment of minimal residual disease in acute lymphoblastic leukaemias. Leukemia 3: 155–158.

    PubMed  Google Scholar 

  115. Hansen-Hagge TE, Yokota S, Bartram CR (1989). Detection of minimal residual disease in acute lymphoblastic leukaemia by in vitro amplification of rearranged T-cell receptor 8 chain sequences. Blood 74: 1762–1767.

    PubMed  CAS  Google Scholar 

  116. Billadeau D, Blackstadt M, Greipp P, Kyle RA, Oken MM, Kay N, Van Ness (1991). Analysis of B-lymphoid malignancies using allele-specific polymerase chain reaction: a technique for sequential quantitation of residual disease. Blood 78: 3021–3029.

    PubMed  CAS  Google Scholar 

  117. Deane M, Norton JD (1991). Immunoglobulin gene’ fingerprinting’: an approach to analysis of B lymphoid clonality in lymphoproliferative disorders. Br J Haematol 77: 274–281.

    Article  PubMed  CAS  Google Scholar 

  118. Veelken H, Tycko B, Sklar J (1991). Sensitive detection of clonal antigen receptor gene rearrangements for the diagnosis and monitoring of lymphoid neoplasms by a polymerase chain reaction-mediated ribonuclease protection assay. Blood 78: 1318–1326.

    PubMed  CAS  Google Scholar 

  119. Yamada M, Hudson S, Tournay O, Bittenbeider S, Shane SS, Lange B, Tsujimoto Y, Caton AJ, Rovera G (1989). Detection of minimal disease in hemopoietic malignancies of B-cell lineage by using third-complementarity-determining region (CDR-III)-specific probes. Proc Natl Acad Sci USA 86: 5123–5127.

    Article  PubMed  CAS  Google Scholar 

  120. Jonsson OG, Kitchens RL, Scott FC, Smith RG (1990). Detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin hypervariable region specific oligonucleotide probes. Blood 76: 2072–2079.

    PubMed  CAS  Google Scholar 

  121. Brisco MJ, Tan LW, Orsborn AM, Morley AA (1990). Development of a highly sensitive assay, based on the polymerase chain reaction, for rare B-lymphocyte clones in a polyclonal population. Br J Haematol 75: 163–167.

    Article  PubMed  CAS  Google Scholar 

  122. Nizet Y, Martiat P, Vaerman JL, Philippe M, Wildman C, Staelens JP, Cornu G, Ferrant A, Michaux JL, Sokal G (1991). Follow-up of residual disease (MRD) in B lineage acute leukaemias using a simplified PCR strategy: evolution of MRD rather than its detection is correlated with clinical outcome. Br J Haematol 79: 205–210.

    Article  PubMed  CAS  Google Scholar 

  123. Yamada M, Wasserman R, Reichard BA, Shane S, Caton AJ, Rovera G (1991). Preferential utilization of specific immunoglobulin heavy chain diversity and joining regions in adult peripheral blood lymphocytes. J Exp Med 173: 395–407.

    Article  PubMed  CAS  Google Scholar 

  124. Breit TM, Wolvers-Tettero ILM, Hahlen K, van Wering E, van Dongen JJM (1991). Extensive junctional diversity of γδ T-cell receptors expressed by T-cell acute lymphoblastic leukemias: implications for the detection of minimal residual disease. Leukemia 5: 1076–1086.

    PubMed  CAS  Google Scholar 

  125. Foa R, Migone N, Saitta M, Fierro MT, Giubellino MC, Lusso P, Cordero di Montezemolo L, Miniero R, Lauria F (1984). Different stages of B cell differentiation in non-T acute lymphoblastic leukemia. J Clin Invest 74: 1756–1763.

    Article  PubMed  CAS  Google Scholar 

  126. Kitchingman GR, Mirro J, Stass S, Rovigatti U, Melvin SL, Williams DL, Raimondi SC, Murphy SB (1986). Biological and prognostic significance of the presence of more than two u heavy-chain genes in childhood acute lymphoblastic leukemia of B precursor origin. Blood 67: 698–703.

    PubMed  CAS  Google Scholar 

  127. Bird J, Galili N, Link M, Stites D, Sklar J (1988). Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. J Exp Med 168: 229–245.

    Article  PubMed  CAS  Google Scholar 

  128. Beishuizen A, Hahlen K, Hagemeijer A, Verhoeven MAJ, Hooijkaas H, Adriaasen HJ, Wolvers-Tettero ILM, Van Wering E, Van Dongen JJM (1991). Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia 5: 657–667.

    PubMed  CAS  Google Scholar 

  129. Beishuizen A, Verhoeven MAJ, Hahlen K, van Wering ER, van Dongen JJM (1992). Differences in immunoglobulin heavy chain gene rearrangement patterns between bone marrow and blood samples in childhood precursor B-acute lymphoblastic leukemia at diagnosis. Leukemia 6: 60–63.

    Google Scholar 

  130. Deane M, Pappas H, Norton JD (1991). Immunoglobulin gene fingerprinting reveals widespread oligoclonality in B lineage acute lymphoblastic leukemia. Leukemia 5: 832–838.

    PubMed  CAS  Google Scholar 

  131. Rovera G, Wasserman R, Yamada M (1991). Detection of minimal residual disease in childhood leukemia with the polymerase chain reaction. N Engl J Med 324: 774–775.

    Google Scholar 

  132. Carter M, Neale GAM, Kitchingman GR (1991). Characterization of immunoglobulin heavy chain genes from an acute lymphocytic leukemia with four rearrangements. Leukemia 5: 668–672.

    PubMed  CAS  Google Scholar 

  133. Wasserman R, Yamada M, Ito Y, Finger LR, Reichard BA, Shane S, Lange B, Rovera G (1992). VH rearrangement events can modify the immunoglobulin heavy chain during progression of B-lineage acute lymphoblastic leukemia. Blood 79: 223–228.

    PubMed  CAS  Google Scholar 

  134. Mirro J, Kitchingman G, Williams D, Lauzon GJ, Lin C-C, Callihan T, Zipf TF (1986). Clinical and laboratory characteristics of acute leukemia with the 4;11 translocation. Blood 67: 689–697.

    PubMed  CAS  Google Scholar 

  135. Raghavachar A, Theil E, Bartram CR (1987). Analyses of phenotype and genotype in acute lymphoblastic leukemias at first presentation and in relapse. Blood 70: 1079–1083.

    PubMed  CAS  Google Scholar 

  136. Raghavachar A, Ludwig WD, Bartram CR (1988). More than two immunoglobulin heavy chain J region genes in the majority of infant leukemia. Eur J Pediatr 147: 503–507.

    Article  PubMed  CAS  Google Scholar 

  137. Bunin NJ, Raimondi SC, Mirro J, Behm FG, Goorha R, Kitchingman (1990). Alterations in immunoglobulin or T cell receptor gene rearrangement at relapse: involvement of llq23 and changes in immunophenotype. Leukemia 4: 727–731.

    PubMed  CAS  Google Scholar 

  138. Deane M, Hoffbrand AV, Prentice HG, Norton JD (1992). Detection of minimal residual disease in B lineage leukaemia by immunoglobulin gene fingerprinting. Haematol Blood Transfusion 34: 178–184.

    Google Scholar 

  139. Tycko B, Ritz J, Sallan S, Sklar J (1992). Changing antigen receptor gene rearrangements in a case of early Pre-B cell leukemia: evidence for a tumor progenitor cell with stem cell features and implications for monitoring residual disease. Blood 79: 481–488.

    PubMed  CAS  Google Scholar 

  140. Biondi A, Yokota S, Hansen-Hagge TE, Rossi V, Giudici G, Maglia O, Basso G, Tell C, Masera G, Bartram CR (1992). Minimal residual disease in childhood acute lymphoblastic leukemia: analysis of patients in continuous complete remission or with consecutive relapse. Leukemia 6: 282–288.

    PubMed  CAS  Google Scholar 

  141. Yamada M, Wasserman R, Lange B, Reichard BA, Womer RB, Rovera G (1990). Minimal residual disease in childhood B-lineage lymphoblastic leukemia. N Engl J Med 323: 448–455.

    Article  PubMed  CAS  Google Scholar 

  142. Campana D, Coustan-Smith E, Janossy G (1990). The immunological detection of minimal residual disease in acute leukemia. Blood 76: 163–169.

    PubMed  CAS  Google Scholar 

  143. Campana D, Coustan-Smith E, Behm FG (1991). The definition of remission in acute leukemia with immunological techniques. Bone Marrow Transplant 8: 429–437.

    PubMed  CAS  Google Scholar 

  144. Campana D, Yokota S, Coustan-Smith E, Hansen-Hagge TE, Janossy G, Bartram CR (1990). The detection of residual acute lymphoblastic leukemia cells with immunological methods and polymerase chain reaction: a comparative study. Leukemia 9: 609–614.

    Google Scholar 

  145. Bradstock KF, Papgeorgiou ES, Janossy G (1981). Diagnosis of meningeal involvement in patients with acute lymphoblastic leukemia: immunoflouresence for terminal transferase. Cancer 47: 2478–2481.

    Article  PubMed  CAS  Google Scholar 

  146. Hooijkaas H, Hahlen K, Adriaansen HJ, Dekker I, van Zanen GE, van Dongen JJM (1989). Terminal deoxynucleotidyl transferase (TdT)-positive cells in cerebrospinal fluid and development of overt CNS leukemia: A 5-year follow-up study in 113 children with a TdT-positive leukemia or non-Hodgkin’s lymphoma. Blood 74: 416–422.

    PubMed  CAS  Google Scholar 

  147. Lange BJ, Rovera G (1990). Detection of minimal residual leukemia in acute lymphoblastic leukemia. Hematol Oncol Clinic North Am 4: 895–914.

    CAS  Google Scholar 

  148. Chessels JM (1986). Diagnostic value of testicular biopsy in acute lymphoblastic leukemia. J Pediatr 108: 331–332.

    Google Scholar 

  149. Blume KG, Beutler E, Bross KJ, Schmidt GM, Spruce WI, Tephtz (1980). Genetic markers in human bone marrow transplantation. Am J Hum Genet 32: 414–419.

    PubMed  CAS  Google Scholar 

  150. Lawler SD, Harris H, Miller J, Barrett A, Powles RL (1987). Cytogenetic follow-up studies of recipients of T-cell depleted allogeneic bone marrow. Br J Haematol 65: 143–150.

    Article  PubMed  CAS  Google Scholar 

  151. Ginsburg D, Antin JH, Smith BR, Orkin SH, Rappeport JM (1985). Origin of cell populations after bone marrow transplantation. Analysis using DNA sequence polymorphisms. J Clin Invest 75: 596–603.

    Article  PubMed  CAS  Google Scholar 

  152. Min GL, Hibbin J, Arthur C, Apperley J, Jeffreys A, Goldman J (1988). Use of minisatellite DNA probes for recognition and characterization of relapse after bone marrow transplantation. Br J Haematol 68: 195–201.

    Article  PubMed  CAS  Google Scholar 

  153. Thein SL, Jeffreys AJ, Blacklock HA (1987). Identification of post-transplant cell population by DNA fingerprint analysis. Lancet 1: 37.

    Google Scholar 

  154. Jeffreys AJ, Wilson V, Neumann R, Keyte J (1988). Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res 16: 10953–10971.

    Article  PubMed  CAS  Google Scholar 

  155. Lawler M, Humphries P, McCann SR (1991). Evaluation of mixed chimerism by in vitro amplification of dinucleotide repeat sequences using the polymerase chain reaction. Blood 77: 2504–2514.

    PubMed  CAS  Google Scholar 

  156. Roth MS, Antin JH, Bingham EL, Ginsburg D (1990). Use of polymerase chain reaction-detected sequence polymorphisms to document engraftment following allogeneic bone marrow transplantation. Transplantation 49: 714.

    Article  PubMed  CAS  Google Scholar 

  157. Horn GT, Richards B, Klinger KW (1989). Amplification of a highly polymorphic VNTR segment by the polymerase chain reaction. Nucleic Acids Res 17: 2140.

    Article  PubMed  CAS  Google Scholar 

  158. Boerwinkle E, Xiong WJ, Fourest E, Chan L (1989). Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: application to the apolipoprotein B 3′ hypervariable region. Proc Natl Acad Sci USA 86: 212.

    Article  PubMed  CAS  Google Scholar 

  159. van Leeuwen JEM, van Toi MJD, Bodzinga BG, Wijnen JTh, van der Keur M, Joosten AM, Tanke HJ, Vossen JM, Meera Khan P (1991). Detection of mixed chimaerism in flow-sorted cell subpopulations by PCR-amplified VNTR markers after allogeneic bone marrow transplantation. Br J Haematol 79: 218–225.

    Article  PubMed  Google Scholar 

  160. Ugozzoli L, Yam P, Petz LD, Ferrara GB, Champlin RE, Forman SJ, Koyal D, Wallace RB (1991). Amplification by the polymerase chain reaction of hypervariable regions of the human genome for evaluation of chimerism after bone marrow transplantation. Blood 77: 1607–1615.

    PubMed  CAS  Google Scholar 

  161. Brisco MJ, Condon J, Sykes PJ, Neoh SH, Morley AA (1991). Detection and quantitation of neoplastic cells in acute lymphoblastic leukaemia by use of the polymerase chain reaction. Br J Haematol 79: 211–217.

    Article  PubMed  CAS  Google Scholar 

  162. Wang AM, Doyle MV, Mark DF (1989). Quantitation of mRNA by the polymerase chain reaction. Proc Natl Acad Sci USA 86: 9717–9721.

    Article  PubMed  CAS  Google Scholar 

  163. Martens ACM, Schultz FW, Hagenbeek A (1987). Nonhomogeneous distribution of leukemia in the bone marrow during minimal residual disease. Blood 70: 1073–1078.

    PubMed  CAS  Google Scholar 

  164. Hann IM, Morris Jones PH, Evans DIK (1977). Discrepancy of bone-marrow aspirations in acute lymphoblastic leukaemia in relapse. Lancet 1: 1215–1216.

    Article  PubMed  CAS  Google Scholar 

  165. Jacobs P (1977). Discrepant bone-marrow aspirations in leukaemia. Lancet 2: 355–356.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Deane, M., Hoffbrand, A.V. (1993). Detection of minimal residual disease in ALL. In: Freireich, E.J., Kantarjian, H. (eds) Leukemia: Advances in Research and Treatment. Cancer Treatment and Research, vol 64. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3086-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3086-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6348-4

  • Online ISBN: 978-1-4615-3086-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics