Skip to main content

Ischemic changes in myocardial ionic eontents of the isolated perfused rat hearts as studied by NMR

  • Chapter
Cellular Function and Metabolism

Abstract

Using 31P-, 23Na- and 39K-NMR, we assessed ischemic changes in high energy phosphates and ion contents of isolated perfused rat hearts continuously and systematically. To discriminate intra- and extracellular Na+, a shift reagent (Dy(TTHA)3-) was used in 23Na-NMR study. In 39K-NMR study, the extracellular K+ signal was suppressed by inversion recovery pulse sequence in order to obtain intracellular K+ signal without using shift reagents. During the early period of ischemia, increases in intracellular Na+ and inorganic phosphate (Pi) were observed in addition to the well-documented decreases in creatine phosphate and ATP and a fall of intracellular pH, suggesting an augmented operation of Na+-H+ exchange triggered by a fall of the intracellular pH resulted from breakdown of ATP. At around 15 min of ischemia, a second larger increase in intracellular Na+ and a decrease in intracellular K+ were observed in association with a second increase in Pi. This was accompnanied by an abrupt rise of the ventricular end-diastolic pressure. As there was a depletion of ATP at this time, the increase in intracellular Na+ and associated decrease in intracellular K+ may be explained by inhibition of the Na+-K+ ATPase due to the depletion of ATP. A longer observation with 31P-NMR revealed a second phosphate peak (at lower magnetic field to ordinary Pi peak) which increased its intensity as ischemic time lengthened. The pH of this 2nd peak changed in parallel with the changes in pH of the bathing solution, indicating the appearance of a compartment whose hydrogen concentration is in equilibrium with that of the external compartment. Thus, the peak could be used as an index of irreversible membrane damage of the myocardium. (Mol Cell Biochem 119: 109–120, 1993)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kawada T, Yoshida Y, Sakurai H, Imai S: Myocardial Na+ during ischemia and accumulation of Ca2+ after reperfusion: A study with momensin and dichlorobenzamil. Jpn J Pharmacol 59: 191–200, 1992

    Article  PubMed  CAS  Google Scholar 

  2. Kleber AG: Extracellular potassium accumulation in acute myocardial ischemia. J Mol Cell Cardiol 16: 389–394, 1984

    Article  PubMed  CAS  Google Scholar 

  3. Knopf H, Theising R, Moon CH, Hirche H: Continuous determination of extracellular space and changes of K+, Na+, Ca+, and H+ during global ischaemia in isolated rat hearts. J Mol Cell Cardiol 22: 1259–1272, 1990

    Article  PubMed  CAS  Google Scholar 

  4. Lazdunski M, Freiin C, Vigne P: The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17: 1029–1042, 1985

    Article  PubMed  CAS  Google Scholar 

  5. Imai S, An-Yun S, Ishibashi T, Nakazawa M: Na+/H+Exchange is not operative under low-flow ischemic conditions. J Mol Cell Cardiol 23: 505–517, 1991

    Article  PubMed  CAS  Google Scholar 

  6. Allen DG, Orchard CH: Myocardial contractile function during ischemia and hypoxia. Circ Res 60: 153–168, 1987

    Article  PubMed  CAS  Google Scholar 

  7. Steenbergen C, Deleeuw G, Rich T, Williamson JR: Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res 41: 849–858, 1977

    Article  PubMed  CAS  Google Scholar 

  8. Kléber AG: Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute globa ischemia in isolated perfused guinea pig hearts. Circ Res 52: 442–450, 1983

    Article  PubMed  Google Scholar 

  9. Ishibashi T, Nakazawa M, Imai S: Changes in myocardial energy metabolism and Na+ permeability produced by a long ischemia as studied by 31P-and 23Na-NMR. J Mol Cell Cardiol 20 (suppl. I): S45, 1988 (Abstract)

    Google Scholar 

  10. Ishibashi T, Matsubara T, Nakazawa M, Imai S: A continuous noninvasive observation of the myocardial K+ content during ischemia and reperfusion with 39K-NMR without shift reagents. Jpn J Pharmacol 49 (Suppl): 124P, 1989 (Abstract)

    Google Scholar 

  11. Garlick PB, Radda G, Seeley J: Studies of acidosis in the is-chaemic heart by phosphorus nuclear magnetic resonance. Bio-chem J 184: 547–554, 1979

    CAS  Google Scholar 

  12. Pike MM, Frazer JC, Dedrick DF, Ingwall JS, Allen PD, Springer Jr. CS, Smith TW: 23Na and 39K nuclear magnetic resonance studies of perfused rat hearts: Discrimination of intra-and extracellular ions using a shift reagent. Biophys J 48: 159–173, 1985

    Article  PubMed  CAS  Google Scholar 

  13. Shiga T, Nakazawa M, Imai S: Ventricular pressure-heart rate products before induction of ischemia as a determinant of the reperfusion-induced accumulation of calcium within myocardium. Jpn J Pharmacol 45: 379–387, 1987

    Article  PubMed  CAS  Google Scholar 

  14. Lundberg P, Harmsen E, Ho C, Vogel HJ: Nuclear magnetic resonance studies of cellular metabolism. Anal Biochem 191: 193–222, 1990

    Article  PubMed  CAS  Google Scholar 

  15. Ishibashi T, Imai S: Fundamental technique for analysis of NMR spectra (in Japanese). Med Philosoph 11: 87–93, 1992

    CAS  Google Scholar 

  16. Jeffrey FM, Storey CJ, Nunnally RL, Malloy CR: Effect of ischemia on NMR detection of phosphorylated metabolites in the intact rat heart. Biochemistry 28: 5323–5326, 1989

    Article  PubMed  CAS  Google Scholar 

  17. Murphy E, Gabel SA, Funk A, London RE: NMR observability of ATP: Preferential depletion of cytosolic ATP during ischemia in perfused rat liver. Biochemistry 27: 526–528, 1988

    Article  PubMed  CAS  Google Scholar 

  18. Clarke K, Willis RJ: Energy metabolism and contractile function in rat heart during graded, isovolumic perfusion using 31P nuclear magnetic resonance spectroscopy. J Mol Cell Cardiol 19: 1153–1160, 1987

    Article  PubMed  CAS  Google Scholar 

  19. Matsubara T, Ishibashi T, Nakazawa M, Yamazoe M, Izumi T, Shibata A, Imai S: Effects of lidocaine on ischemic myocardial metabolism assessed by 31P-NMR in the isolated perfused rat heart. Jpn Heart J 32: 493–504, 1991

    Article  PubMed  CAS  Google Scholar 

  20. Ishibashi T, Matsubara T, Nakazawa M, Katsumata N, Imai S: On the mode of cardioprotection produced by a new bradycardic agent, FR76830, during ischaemia and after reperfusion in the isolated perfused rat heart: A 31P-NMR study. Cardiovasc Res 24: 1008–1012, 1990

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka M, Ishibashi T, Imai S: Effects of two angiotensin converting enzyme inhibitors on the mechanical function and energy metabolism of isolated rat hearts: A nuclear magnetic resonance study with an active form of benazeprilat and captopril. Arzneim-Forsch 40: 1082–1086, 1990

    CAS  Google Scholar 

  22. Sako EY, Kingsley-Hickman PB, From AHL, Foker JE, Ugurbil K: ATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31P NMR. J Biochem Tokyo 263: 10600–10607, 1988

    CAS  Google Scholar 

  23. Ingwall JS: Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. Am J Physiol 242: H729–H744, 1982

    PubMed  CAS  Google Scholar 

  24. Seo Y, Murakami M, Suzuki E, Watari H: A new method to discriminate intracellular and extracellular K by 39K NMR without chemical-shift reagents. J Magn Res 75: 529–533, 1987

    CAS  Google Scholar 

  25. Seo Y, Murakami M, Suzuki E, Kuki S, Nagayama K, Watari H: NMR characteristics of intracellular K in the rat salivary gland: A 39K NMR study using double-quantum filtering. Biochemistry 29: 599–603, 1990

    Article  PubMed  CAS  Google Scholar 

  26. Kuki S, Suzuki E, Watari H, Takami H, Matsuda H, Kawashima Y: Potassium-39 nuclear magnetic resonance observation of intracellular potassium without chemical shift reagents during metabolic inhibition in the isolated perfused heart. Circ Res 67: 401–405, 1990

    Article  PubMed  CAS  Google Scholar 

  27. Hotta Y, Ando H, Naruse M, Takeya K: Shift reagent free estimation of intracellular sodium content in the working heart by 23Na NMR. Jpn J Pharmacol 52 (Suppl. I): 280P, 1990

    Google Scholar 

  28. Gevers W: Generation of protons by metabolic processes in heart cells. J Mol Cell Cardiol 9: 867–874, 1977

    Article  PubMed  CAS  Google Scholar 

  29. Seelye RN: Proton generation and control during anaerobic glycolysis in heart cells. J Mol Cell Cardiol 12: 1483–1486, 1980

    Article  PubMed  CAS  Google Scholar 

  30. Murray JM, Weber A: The cooperative action of muscle proteins. Scientific American 230: 58–71, 1974

    Article  PubMed  CAS  Google Scholar 

  31. Garlick PB, Brown TR, Sullivan RH, Ugurbil K: Observation of a second phosphate pool in the perfused heart by 31P NMR: Is this the mitochondrial phosphate? J Mol Cell Cardiol 15: 855–858, 1983

    Article  PubMed  CAS  Google Scholar 

  32. Regan TJ, Broisman L, Haider B, Eaddy C, Oldewurtel HA: Dissociation of myocardial sodium and potassium alterations in mild versus severe ischemia. Am J Physiol 238: H575–H580, 1980

    PubMed  CAS  Google Scholar 

  33. Pridjian AK, Levitsky S, Krukenkamp I, Silverman NA, Feinberg H: Intracellular sodium and calcium in the postischemic myocardium. Ann Thrac Surg 43: 416–419, 1987

    Article  CAS  Google Scholar 

  34. Wittenberg B A, Gupta RK: NMR studies of intracellular sodium ions in mammalian cardiac myocytes. J Biol Chem 260: 2031–2034, 1985

    PubMed  CAS  Google Scholar 

  35. Baischi JA, Frazer JC, Fetters JK, Clarke K, Springer CS, Smith TW, Ingwall JS: Shift reagent and Na23 NMR discriminates between extra and intra cellular sodium pools in ischemic heart. Circulation 72: 355, 1985

    Google Scholar 

  36. Scholz W, Albus U, Linz W, Martorana P, Lang HJ, Schölkens BA: Effects of Na+/H+ exchange inhibitors in cardiac ischemia. J Mol Cell Cardiol 24: 731–740, 1992

    Article  PubMed  CAS  Google Scholar 

  37. Karmazyn M: The 1990 Merck Frosst Award. Ischemic and reperfusion injury in the heart. Cellular mechanisms and pharmacological interventions. Can J Physiol Pharmacol 69: 719–730, 199

    Google Scholar 

  38. Sargent CA, Smith MA, Dzwonczyk S, Sleph PG, Grover GJ: Effect of potassium channel blockade on the anti-ischemic actions of mechanistically diverse agents. J Pharmacol Exp Ther 259: 97–103, 1991 121-127.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ishibashi, T., Nakazawa, M., Imai, S. (1993). Ischemic changes in myocardial ionic eontents of the isolated perfused rat hearts as studied by NMR. In: Yazaki, Y., Mochizuki, S. (eds) Cellular Function and Metabolism. Developments in Molecular and Cellular Biochemistry, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3078-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3078-7_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6344-6

  • Online ISBN: 978-1-4615-3078-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics