Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 232))

  • 71 Accesses

Abstract

Recent molecular genetic studies have shown that most human cancers display a series of multiple genetic alterations. These alterations presumably underlie the multi-factorial etiology and multistage progression of the tumors, although in most cases the precise sequence of genetic events remains unclear. The mechanisms of carcinogenesis are probably the most important single question in cancer research, because when we understand the process of malignant transformation, we are likely to be able to devise means of cancer prevention.1–3 So, many distinct genes and gene products have been implicated in cancer and a few basic concepts have recently emerged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Bishop, Cellular oncogenes and retroviruses, Ann. Rev. Biochem. 52:350 (1983).

    Article  Google Scholar 

  2. R. A. Weinberg, Oncogenes and the molecular origins of cancer, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989).

    Google Scholar 

  3. G. M. Cooper, Oncogenes, Jones and Bartlett, Boston, (1990).

    Google Scholar 

  4. R. Sager, Genetic suppression of tumor formation, Adv. Cancer Res. 44, 44:43 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. H. Harris, The genetic analysis of malignancy, J. Cell. Sci. Suppl. 4:431 (1986).

    PubMed  CAS  Google Scholar 

  6. G. Klein, The approaching era of tumor suppressor genes, Nature 238:1539 (1987)

    CAS  Google Scholar 

  7. E. Farber and R. Cameron, The sequential analysis of cancer development, Adv. Cancer Res. 31:125 (1980).

    Article  PubMed  CAS  Google Scholar 

  8. G. Klein and E. Klein, Evolution of tumors and the impact of molecular oncology, Nature 315:190 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. J. S. Rhim, Neoplastic transformation of human epithelial cells in vitro, Anticancer Res. 9:1345 (1989).

    PubMed  CAS  Google Scholar 

  10. J. S. Rhim and A. Dritschilo, Neoplastic transformation in human cell culture, Mechanisms of carcinogenesis, Humana Press, Totowa (1991).

    Google Scholar 

  11. G. M. Cooper, S. Okenquist, and L. Silverman, Transforming activity of chemically transformed and normal cells, Nature 284:418 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. C. Shih, B. Z. Shilo, M. P. Goldfarb, A. Dannenberg, and R. A. Weinberg, Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin, Proc. Natl. Acad. Sci. USA 76:5714 (1979).

    Article  PubMed  CAS  Google Scholar 

  13. M. A. Rassonlzadegan, A. Cowie, A. Carr, N. Glachenhous, and R. Kamen, The roles of individual polyoma virus early proteins in oncogenic transformation, Nature 300:713 (1982).

    Article  Google Scholar 

  14. P. V. D. Eisen, A. Houweling, and A. Van der Eb, Expression of region EIb of human adenoviruses in the absence of region EIb is not sufficient for complete transformation, Virology 128:377 (1983).

    Article  Google Scholar 

  15. J. S. Butel, SV40 large T-antigen:dual oncogene, Cancer Surv. 5:343 (1986).

    PubMed  CAS  Google Scholar 

  16. D. P. Lane and L. V. Crawford, T antigen is bound to a host protein in SV40transformed cells, Nature 298:261 (1979).

    Article  Google Scholar 

  17. S. A. Courtneidge and A. E. Smith, Polyoma virus transforming protein associated with the product of the c-src cellular gene, Nature 303:435 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. M. R. Green, When the products of oncogenes and anti-oncogenes meet, Cell 561:1 (1989).

    Article  Google Scholar 

  19. R. A. Weinberg, Fewer and fewer oncogenes, Cell 30:3 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. T. G. Krontiris and G. M. Cooper, Transforming activity of human tumor DNAs, Proc. Natl. Acad. Sci. USA 78:1181 (1981).

    Article  PubMed  CAS  Google Scholar 

  21. M. Perucho, M. Goldfarb, K. Simizu, C. Lama, J. Fogh, and M. Wigier, Human tumor-derived cell lines contain common and different transforming genes, Cell 27:467 (1981).

    Article  PubMed  CAS  Google Scholar 

  22. S. Pulciani, E. Santos, A. V. Lauver, L. K. Long, K. C. Robbins, and M. Barbacid, Oncogenes in human tumor cell lines:Molecular cloning of a transforming gene from human bladder carcinoma cells, Proc. Natl. Acad. Sci. USA 79:2845 (1982).

    Article  PubMed  CAS  Google Scholar 

  23. G. M. Cooper, Cellular transforming genes, Science 218:801 (1982).

    Article  Google Scholar 

  24. Y. Yuasa, S. K. Srivastava, C. Y. Dunn, J. S. Rhim, E. P. Reddy, and S. A. Aaronson, Acquisition of transforming properties by alternative point mutations with c-bas/has human proto-oncogene, Nature 303:775 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. Y. Yuasa, A. Eva, M. H. Kraus, S. K. Srivastava, S. W. Needleman, J. H. Pierce, J. S. Rhim, R. Gol, E. P. Reddy, S. R. Tronick, and S. A. Aaronson, Ras-related oncogenes of human tumors, in: “Cancer Cells,” G. F. Vande Woude, A. J. Levine, W. C. Topp, J. D. Watson, eds., Cold Spring Harbor Laboratories (1984).

    Google Scholar 

  26. J. Fujita, O. Yoshida, Y. Yuasa, J. S. Rhim, M. Hatanaka, and S. A. Aaronson, Ha-ras oncogenes are activated by somatic alterations in human urinary tract tumors, Nature 309:464 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. L. A. Feig, R. C. Bast, R. C. Knapp, and G. M. Cooper, somatic activation of ras-K gene in a human ovarian carcinoma, Science 223:698 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. A. Balmain, M. Ramsden, G. T. Bowden, and J. Smith, Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas, Nature 307:658 (1984).

    Article  PubMed  CAS  Google Scholar 

  29. E. Santos, S. Sukumar, D. Martin-Zanca, H. Zarbl, and M. Barbacid, Transforming ras gene, in: “Viruses and Cancer,” P. W. J. Rigby and N. M. Wilkie, eds., Cambridge Univ. Press, Cambridge (1985).

    Google Scholar 

  30. A. Balmain and I. B. Pragnell, Mouse skin carcinomas induced in vitro by chemical carcinogens have a transforming Harvey-ras oncogene, Nature 303:72 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. S. Sukumar, V. Notario, D. Martin-Zanca, and M. Barbacid, Induction of mammary carcinomas in rats by nitroso-methyl-urea involves the malignant activation of the H-ras 1 locus by single point mutation, Nature 306:658 (1983).

    Article  PubMed  CAS  Google Scholar 

  32. I. Guerrero, P. Corzada, A. Mayer, and A. Pellicer, Molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene, Proc. Natl. Acad. Sci. USA 81:202 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. H. Zarbl, S. Sukumar, A. V. Arthur, D. Martin-Zanca, and M. Barbacid, Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats, Nature 312:382 (1985).

    Article  Google Scholar 

  34. J. S. Rhim, J. Fujita, and J. B. Park, Activation of H-ras oncogene in 3-methylcholanthrene-transformed human cell line, Carcinogenesis 8:1165 (1987).

    Article  PubMed  CAS  Google Scholar 

  35. S. A. Aaronson and S. R. Tronick, The role of oncogenes in human neoplasia, in: “Important Advances in Oncology,” V. Devita, S. Helluman, and S. Rosenberg, eds., J. B. Lippincott Co., Philadelphia (1985).

    Google Scholar 

  36. J. J. Yunis, The chromosomal basis of human neoplasia, Science 221:227 (1984).

    Article  Google Scholar 

  37. D. C. Swan, O. W. McBride, K. C. Robbins, D. A. Keithley, and S. A. Aaronson, Chromosomal mapping of the simian sarcoma virus onc gene analogue in human cells, Proc. Natl. Acad. Sci. USA 79:4691 (1982).

    Article  PubMed  CAS  Google Scholar 

  38. K. Prakash, O. W. McBride, D. C. Swan, S. G. Devare, S. R. Tronick, and S. A. Aaronson, Abelson murine leukemia virus:structural requirements for transforming gene function, Proc. Natl. Acad. Sci. USA 79:5210 (1982).

    Article  PubMed  CAS  Google Scholar 

  39. R. Taub, I. Kirsch, C. Morton, G. Lenoir, D. Swan, S. A. Tronick, S. A. Aaronson, and P. Leder, Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt’s lymphoma and murine plasmacytoma cells, Proc. Natl. Acad. Sci. USA 79:7839 (1982).

    Article  Google Scholar 

  40. O. W. McBride, D. C. Swan, S. R. Tronick, R. Gol, E. Klimanis, D. E. Moore, and S. A. Aaronson, Regional chromosomal location of N-ras-1, K-ras-1, K-ras-2 and myb oncogenes in human cells, Nucleic Acids Res. 11:8221 (1983).

    Article  PubMed  CAS  Google Scholar 

  41. O. W. McBride, D. C. Swan, E. Santos, M. Barbacid, S. R. Tronick, and S. A. Aaronson, Localization of the normal allele of T-24 human bladder carcinoma oncogene to chromosome 11, Nature 300:773 (1982).

    Article  PubMed  CAS  Google Scholar 

  42. R. Dalla-Favera, R. C. Gallo, A. Giallongo, and C. M. Croce, Chromosomal localization of the human homolog (c-sis) of the simian sarcoma virus onc gene, Science 218:686 (1982).

    Article  PubMed  CAS  Google Scholar 

  43. R. Dalla-Favera, M. Bregni, J., Erikson, D. Patterson, R. C. Gallo, and C. M. Croce, Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt’s lymphoma cells, Proc. Natl. Acad. Sci. USA 79:7824 (1982).

    Article  PubMed  CAS  Google Scholar 

  44. B. G. Weel, S. C. Jhanwar, R. S. Chaganti, and W. S. Hayward, Two human c-onc genes are located on the long arm of chromosome 8, Proc. Natl. Acad. Sci. USA 79:7842 (1982).

    Article  Google Scholar 

  45. B. deMartinville, J. Giacalone, C. Shih, R. A. Weinberg, and U. Francke, Oncogene from human EJ bladder carcinoma is located on the short arm of chromosome 11, Science 219:498 (1983).

    Article  CAS  Google Scholar 

  46. A. Y. Sakaguchi, S. L. Naylor, T. B. Shows, J. J. Toole, M. McCoy, and R. A. Weinberg, Human c-Ki-ras2 proto-oncogene on chromosome 12, Science 219:1081 (1983).

    Article  PubMed  CAS  Google Scholar 

  47. A. Hall, C. J. Marshall, N. I. Spurr, and R. A. Weiss, Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1, Nature 303:396 (1983).

    Article  PubMed  CAS  Google Scholar 

  48. M. E. Harper, G. Franchini, J. Love, M. I. Simon, R. C. Gallo, and F. Wong-Staal, Chromosomal sublocalization of human c-myb and c-fes cellular onc genes, Nature 304:169 (1983).

    Article  PubMed  CAS  Google Scholar 

  49. B. deMartinville, J. M. Cunningham, J. J. Murray, and U. Francke, The N-ras oncogene assigned to the short arm of human chromosome 1, Nucleic Acids Res. 11:5267 (1983).

    Article  CAS  Google Scholar 

  50. J. Ryan, P. E. Barker, K. Simizu, M. Wigler, and F. H. Ruddle, Chromosomal assignment of a family of human oncogenes, Proc. Natl. Acad. Sci. USA 80:4460 (1983).

    Article  PubMed  CAS  Google Scholar 

  51. S. J. O’Brien, W. G. Nash, J. L. Goodwin, D. R. Lowy, and E. H. Chang, Dispersion of the ras family of transforming genes to four different chromosomes in man, Nature 302:839 (1983).

    Article  PubMed  Google Scholar 

  52. T. I. Bonner, S. J. O’Brien, W. G. Nash, and U. R. Rapp, The human homologs of the ras (mil)oncogene are located on human chromosomes 3 and 4, Science 223:71 (1984).

    Article  PubMed  CAS  Google Scholar 

  53. J. Groffen, N. Heisterkamp, N. Spurr, S. Dana, J. J. Wasmuth, and J. R. Stephenson, Chromosomal localization of human c-fins oncogene, Nucleic Acids Res. 11:6331 (1983).

    Article  PubMed  CAS  Google Scholar 

  54. M. F. Roussel, C. I. Sherr, P. E. Barker, and F. H. Ruddle, Molecular cloning of the c-fins locus and its assignment to human chromosome 5, J. Virol. 48:770 (1983).

    PubMed  CAS  Google Scholar 

  55. D. M. Glover and B. D. Hames, Oncogenes, IRL Press, Oxford.

    Google Scholar 

  56. M. F. Hansen and W. K. Cavenee, Genetics of cancer predisposition, Cancer Res. 47:5578 (1987).

    Google Scholar 

  57. A. G. Knudson, Jr., Genetics of human cancer, Ann. Rev. Gen. 20:231 (1986).

    Article  Google Scholar 

  58. H. Land, L. F. Parada, and R. A. Weinberg, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature 304:596 (1983).

    Article  PubMed  CAS  Google Scholar 

  59. H. E. Ruley, Adenovirus early region IA enables viral and cellular transforming genes to transform primary cells in culture, Nature 304:602 (1983).

    Article  PubMed  CAS  Google Scholar 

  60. J. S. Rhim, G. Jay, P. Arnstein, F. M. Price, K. K. Sanford, and S. A. Aaronson, Neoplastic transformation of human epidermal keratinocytes by Ad12-SV40 and Kirsten sarcoma viruses, Science 227:1250 (1985).

    Article  PubMed  CAS  Google Scholar 

  61. J. S. Rhim, J. Fujita, P. Arnstein, and S. A. Aaronson, Neoplastic conversion of human keratinocytes by adenovirus 12-SV40 virus and chemical carcinogens, Science 232:385 (1986).

    Article  PubMed  CAS  Google Scholar 

  62. P. Thraves, Z. Salehi, A. Dritschilo, and J. S. Rhim, Neoplastic transformation of immortalized human epidermal keratinocytes by ionizing radiation, Proc. Natl. Acad. Sci. USA 87:1174 (1990).

    Article  PubMed  CAS  Google Scholar 

  63. R. F. Newbold and R. W. Overell, Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene, Nature 304:648 (1983).

    Article  PubMed  CAS  Google Scholar 

  64. J. S. Rhim, T. Kawakami, J. Pierce, K. Sanford, and P. Arnstein, Cooperation of v-oncogenes in human epithelial cell transformation, leukemia 2:1515 (1988).

    Google Scholar 

  65. J. S. Rhim, J. b. Park, and G. Jay, Neoplastic transformation of human keratinocytes by polyprene-induced DNA mediated transfer of an activated oncogene, Oncogene 4:1403 (1989).

    PubMed  CAS  Google Scholar 

  66. R. Gantt, K. K. Sanford, R. Parshad, F. M. Price, W. D. Peterson, and J. S. Rhim, Enhanced G2 chromatid radiosensitivity, an early stage in the neoplastic transformation of human epidermal keratinocytes in culture, Cancer Res. 47:1390 (1987).

    PubMed  CAS  Google Scholar 

  67. P. Boukamp, E. J. Stanbridge, D. Y. Foo, P. A. Ceratti, and N. E. Fusenig, c-Ha-ras oncogene expression immortalized human keratinocytes (HaCat) alters growth potential in vivo but lacks correlation with malignancy, Cancer Res. 50:2840 (1990).

    PubMed  CAS  Google Scholar 

  68. M. Durst, D. Gallahan, G. Jay, and J. S. Rhim, Glucocorticoid-enhanced neoplastic transformation of human papilloma virus type 16 and activated ras oncogene, Virology 73:767 (1989).

    Article  Google Scholar 

  69. R. R. Reddel, Y. Ke, E. Kaighn, L. Malan-Shibley, J. F. Lechner, J. S. Rhim, and C. C. Harris, Human bronchial epithelial cells neoplastically transformed by v-Ki-ras altered response to inducers of terminal squamous differentiation, Oncogene Res. 3:401 (1988).

    PubMed  CAS  Google Scholar 

  70. P. Amstad, R. R. Reddel, A. Pfiefer, L. Malan-Shibley, G. E. Mark III, and C. C. Harris, Neoplastic transformation of a human bronchial epithelial cell line by a recombinant retrovirus encoding viral Harvey ras, Mol. Carcinogenesis 1:151 (1988).

    Article  CAS  Google Scholar 

  71. R. Clark, M. R. Stampfer, R. Milley, E. O’Rourke, K. H. Walen, M. Kriegler, J. Kopplin, and F. McCormick, Transformation of human mammary epithelial cells by oncogenic retroviruses, Cancer Res. 48:4689 (1988).

    PubMed  CAS  Google Scholar 

  72. K. H. Walen and P. Arnstein, Induction of tumorigenesis and chromosomal abnormalities in human amniocytes infected with simian virus 40 and Kirsten sarcoma virus, In Vitro Cell Dev. Biol. 2:57 (1986).

    Article  Google Scholar 

  73. J. A. DiPaolo, C. D. Woodworth, N. C. Popeseu, V. Notano, and J. Doniger, Induction of human cervical squamous cell carcinoma by sequential transfection with human papilloma virus type 16 DNA and viral Harvey ras oncogene, Oncogene 4:395 (1989).

    PubMed  CAS  Google Scholar 

  74. C. A. Reznikoff, L. J. Loretz, B. J. Christian, W. Wu, and L. F. Meisner, Neoplastic transformation of SV40 immortalized human urinary tract epithelial cells by in vitro exposure to 3-methylcholanthrene, Carcinogenesis 9:1427 (1988).

    Article  PubMed  CAS  Google Scholar 

  75. B. J. Christian, C. Kao, W. Wu, L. F. Meisner, and C. A. Rezinkoff, Transformation of SV40-immortalized human uroepithelial cells by transfection with ras oncogene, Cancer Res. 50:4779 (1990).

    PubMed  CAS  Google Scholar 

  76. J. F. Lechner, D. T. Smooth, A. M. A. Pfeifer, K. H. Cole, A. Weston, J. D. Groopman, P. G. Shields, T. Tokiwa, and C. C. Harris, A non-tumorigenic human liver epithelial cell culture model for chemical and biological carcinogenesis investigations, in: “Neoplastic Transformation in Human Cell Culture, Mechanisms of Carcinogenesis,” J. S. Rhim and A. Dritschilo, eds., Humana Press, Totowa (1991).

    Google Scholar 

  77. M. Namba, Y., Kano, L. Y. Bai, K. Mikara, and M. Miyazaki, Establishment and characterization of SV40 T-antigen immortalized human liver cells, in: “Neoplastic Transformation in Human Cell Culture, Mechanisms of Carcinogenesis, J. S. Rhim and A. Dritschilo, eds., Humana Press, Totowa (1991).

    Google Scholar 

  78. A. Haugen, D. Ryberg, I. L. Hansteen, and P. Amstad, Neoplastic transformation of human kidney epithelial cell line transfected with v-Ha-ras oncogene, Int. J. Cancer 45:572 (1990).

    Article  PubMed  CAS  Google Scholar 

  79. R. D. Cone, M. Platzer, L. A. Piccinini, M. Jaramillo, and T. F. Davies, HLA-DR gene expression in a proliferating human thyroid cell clone (12S), Endocrinology 1123:2067 (1988).

    Article  Google Scholar 

  80. N. R. Lemoine, E. S. Mayall, T. Jones, D. Shear, S. McDermid, P. Kendall-Taylor, and D. Wynford-Thomas, Characterization of human thyroid epithelial cells immortalized in vitro by simian virus 40 DNA transfection, Br. J. Cancer 60:897 (1989).

    Article  PubMed  CAS  Google Scholar 

  81. R. D. Berry, S. C. Powell, and C. Paraskeva, In vitro culture of human fetal colonic epithelial cells and their transformation with origin virus SV40 DNA, Br. J. Cancer 57:287 (1988).

    Article  PubMed  CAS  Google Scholar 

  82. A. C. Williams, S. J. Harper, and C. Paraskeva, Neoplastic transformation of a human colonic epithelial cell line in vitro evidence for the adenoma to carcinoma sequence, Cancer Res. 50:4724 (1990).

    PubMed  CAS  Google Scholar 

  83. D. P. Chopra, A. P. Joiakin, b. Retherford, P. A. Mathieu, and J. S. Rhim, Transformation of human tracheal gland epithelial cells in vitro, in: “Neoplastic Transformation in Human Cell Culture, Mechanisms of Carcinogenesis,” J. S. Rhim and A. Dritschilo, eds., Humana Press, Totowa (1991).

    Google Scholar 

  84. K. Dutt, M. Scott, M. Del Monte, N. Agarwal, P. Sternberg, S. K. Srivastava, and A Srinivastan, Establishment of human retinal pigment epithelial cell lines by oncogenes, Oncogene 5:195 (1990).

    PubMed  CAS  Google Scholar 

  85. G. D. Stoner, M. E. Kaighn, R. R. Reddel, J. H. Resan, D. Bowman, Z. Naio, M. Matsukura, M. You, A. J. Calati, and C. C. Harris, Establishment and characterization of SV40 T-antigen immortalized human esophageal epithelial cells, Cancer Res. 51:365 (1991).

    PubMed  CAS  Google Scholar 

  86. K. Melber, G. Zhu, and L. Diamond, SV40-transfected human melanocyte sensitivity to growth inhibition by the phorbol ester 12–0-tetradecanoyl-phorbol-13-acetate, Cancer Res. 49:3650 (1989).

    PubMed  CAS  Google Scholar 

  87. M. E. Kaighn, R. R. Reddel, J. F. Lechner, D. M. Peehl, R. F. Camalier, E. D. Brash, U. Saffiotti, and C. C. Harris, Transformation of human neonatal prostate epithelial cells by strontium phosphate transfection with a plasmid containing SV40 early region genes, Cancer Res. 49:3050 (1989).

    PubMed  CAS  Google Scholar 

  88. W. O’Brien, J. Stenman, and R. Sager, Suppression of tumor growth by senescence in virally transformed human fibroblasts, Proc. Natl. Acad. Sci USA 83:8659 (1986).

    Article  PubMed  Google Scholar 

  89. M. Namba, K. Nishitani, F. Fukushima, T. Kimoto, and K. Nose, Multistep process of neoplastic transformation of normal human fibroblasts by 60Co gamma rays and Harvey sarcoma viruses, Int. J. Cancer 37:419 (1986).

    Article  PubMed  CAS  Google Scholar 

  90. P. H. Hurtin, V. M. Maker, and J. J. McCormick, Malignant transformation of human fibroblasts caused by expression of a transfected T24 H-ras oncogene, Proc. Natl. Acad. Sci. USA 86:187 (1989).

    Article  Google Scholar 

  91. M. Nagarajan, B. M. Bowman, L. Rigby, J. S. Rhim, and S. Sukamar, p53, a direct target of mutational activation by chemical carcinogens, in: “Neoplastic Transformation in Human Cell Culture, Mechanisms of Carcinogenesis,” J. S. Rhim and A. Dritschilo, eds, Humanan Press, Totowa (1991).

    Google Scholar 

  92. Vogelstein, E. R. Fearon, S. R. Hamilton, S. E. Kern, A. C. Preisinger, M. Leppert, Y. Nakamura, R. White, A. M. Smits, and J. L. Bos, Genetic alterations during colorectal-tumor development, N. Engl. J. Med. 319:525 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rhim, J.S., Yang, J.H., Lee, I.H., Lee, M.S., Park, J.B. (1992). Oncogenes and Human Cancers. In: Zervos, C. (eds) Oncogene and Transgenics Correlates of Cancer Risk Assessments. NATO ASI Series, vol 232. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3056-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3056-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6333-0

  • Online ISBN: 978-1-4615-3056-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics